Daobing Chen , Xiaolong Zhang , Ruteng Wang , Zhen Lin , Gang Li , Yifeng Lei , Longjian Xue , Sheng Liu
{"title":"用于智能设备的生物启发可扩散多信号自感应覆盖复合材料","authors":"Daobing Chen , Xiaolong Zhang , Ruteng Wang , Zhen Lin , Gang Li , Yifeng Lei , Longjian Xue , Sheng Liu","doi":"10.1016/j.coco.2024.102085","DOIUrl":null,"url":null,"abstract":"<div><div>The spreadable materials with multi-sensing capabilities offer a wide range of application possibilities. They can be applied directly to the surface of intelligent devices, facilitating the creation of self-sensing shells. Despite significant progress in the development of such materials, expanding their diverse sensing capabilities remains a critical focus in this field. Here, we present a spreadable material endowed with multiple signal self-sensing capabilities. The material, which can be easily applied to the surface of devices, offers real-time monitoring of temperature, humidity, and device damage. This material comprised carbon black nanoparticles, carbon nanotubes, and sodium carboxymethyl cellulose, exhibiting excellent electrical conductivity. It exhibited a temperature coefficient of resistivity (TCR) of approximately 0.35%per°C, a humidity sensing sensitivity ranging from 3.57 to 4.31 Ω/RH%, and a strain sensing sensitivity gauge factor value of approximately 2.3. We anticipate that the proposed strategy utilizing spreadable multi-signal sensing materials will be extensively applied to the surfaces of various intelligent equipment, thereby furnishing a diverse range of signal data crucial for both safeguarding intelligent systems and enhancing environmental monitoring capabilities.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102085"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired spreadable multi-signal self-sensing covering composite material for intelligent devices\",\"authors\":\"Daobing Chen , Xiaolong Zhang , Ruteng Wang , Zhen Lin , Gang Li , Yifeng Lei , Longjian Xue , Sheng Liu\",\"doi\":\"10.1016/j.coco.2024.102085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spreadable materials with multi-sensing capabilities offer a wide range of application possibilities. They can be applied directly to the surface of intelligent devices, facilitating the creation of self-sensing shells. Despite significant progress in the development of such materials, expanding their diverse sensing capabilities remains a critical focus in this field. Here, we present a spreadable material endowed with multiple signal self-sensing capabilities. The material, which can be easily applied to the surface of devices, offers real-time monitoring of temperature, humidity, and device damage. This material comprised carbon black nanoparticles, carbon nanotubes, and sodium carboxymethyl cellulose, exhibiting excellent electrical conductivity. It exhibited a temperature coefficient of resistivity (TCR) of approximately 0.35%per°C, a humidity sensing sensitivity ranging from 3.57 to 4.31 Ω/RH%, and a strain sensing sensitivity gauge factor value of approximately 2.3. We anticipate that the proposed strategy utilizing spreadable multi-signal sensing materials will be extensively applied to the surfaces of various intelligent equipment, thereby furnishing a diverse range of signal data crucial for both safeguarding intelligent systems and enhancing environmental monitoring capabilities.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"51 \",\"pages\":\"Article 102085\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213924002766\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002766","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Bio-inspired spreadable multi-signal self-sensing covering composite material for intelligent devices
The spreadable materials with multi-sensing capabilities offer a wide range of application possibilities. They can be applied directly to the surface of intelligent devices, facilitating the creation of self-sensing shells. Despite significant progress in the development of such materials, expanding their diverse sensing capabilities remains a critical focus in this field. Here, we present a spreadable material endowed with multiple signal self-sensing capabilities. The material, which can be easily applied to the surface of devices, offers real-time monitoring of temperature, humidity, and device damage. This material comprised carbon black nanoparticles, carbon nanotubes, and sodium carboxymethyl cellulose, exhibiting excellent electrical conductivity. It exhibited a temperature coefficient of resistivity (TCR) of approximately 0.35%per°C, a humidity sensing sensitivity ranging from 3.57 to 4.31 Ω/RH%, and a strain sensing sensitivity gauge factor value of approximately 2.3. We anticipate that the proposed strategy utilizing spreadable multi-signal sensing materials will be extensively applied to the surfaces of various intelligent equipment, thereby furnishing a diverse range of signal data crucial for both safeguarding intelligent systems and enhancing environmental monitoring capabilities.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.