Vasileios E. Katzourakis , Constantinos V. Chrysikopoulos
{"title":"具有非线性附着力的聚合纳米粒子传输:建模与实验验证","authors":"Vasileios E. Katzourakis , Constantinos V. Chrysikopoulos","doi":"10.1016/j.advwatres.2024.104819","DOIUrl":null,"url":null,"abstract":"<div><div>A conceptual mathematical model was developed to simulate the transport of migrating nanoparticles in homogeneous, water saturated, 1-dimensional porous media. The model assumes that nanoparticles can collide with each other and aggregate. Nanoparticles can be found attached reversibly and/or irreversibly onto the solid matrix of the aquifer or suspended in aqueous phase. Attached particles may either contribute to the acceleration of subsequent particle deposition or hinder it, leading to the ripening or blocking process, respectively. The aggregation process was simulated based on the Smoluchowski Population Balance Equation (PBE) and was coupled with the advection-dispersion-attachment equation (ADA) to form a family of partial differential equations that govern the migration of nanoparticles in porous media. For the solution of the PBE, an efficient finite volume solver was employed that significantly accelerated computation times, by reducing the number of participating equations, while maintaining the required accuracy. The developed model was applied to nanoparticle transport experimental data available in literature. The model successfully matched the breakthrough concentration curves, and estimated the corresponding nanoparticle diameter, proving its ability to capture the physical processes participating in nanoparticle transport.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104819"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0309170824002069/pdfft?md5=d546cfc8250e7debc9c54660c8ed9cba&pid=1-s2.0-S0309170824002069-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Aggregating nanoparticle transport with nonlinear attachment: Modeling and experimental validation\",\"authors\":\"Vasileios E. Katzourakis , Constantinos V. Chrysikopoulos\",\"doi\":\"10.1016/j.advwatres.2024.104819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A conceptual mathematical model was developed to simulate the transport of migrating nanoparticles in homogeneous, water saturated, 1-dimensional porous media. The model assumes that nanoparticles can collide with each other and aggregate. Nanoparticles can be found attached reversibly and/or irreversibly onto the solid matrix of the aquifer or suspended in aqueous phase. Attached particles may either contribute to the acceleration of subsequent particle deposition or hinder it, leading to the ripening or blocking process, respectively. The aggregation process was simulated based on the Smoluchowski Population Balance Equation (PBE) and was coupled with the advection-dispersion-attachment equation (ADA) to form a family of partial differential equations that govern the migration of nanoparticles in porous media. For the solution of the PBE, an efficient finite volume solver was employed that significantly accelerated computation times, by reducing the number of participating equations, while maintaining the required accuracy. The developed model was applied to nanoparticle transport experimental data available in literature. The model successfully matched the breakthrough concentration curves, and estimated the corresponding nanoparticle diameter, proving its ability to capture the physical processes participating in nanoparticle transport.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104819\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002069/pdfft?md5=d546cfc8250e7debc9c54660c8ed9cba&pid=1-s2.0-S0309170824002069-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002069\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002069","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Aggregating nanoparticle transport with nonlinear attachment: Modeling and experimental validation
A conceptual mathematical model was developed to simulate the transport of migrating nanoparticles in homogeneous, water saturated, 1-dimensional porous media. The model assumes that nanoparticles can collide with each other and aggregate. Nanoparticles can be found attached reversibly and/or irreversibly onto the solid matrix of the aquifer or suspended in aqueous phase. Attached particles may either contribute to the acceleration of subsequent particle deposition or hinder it, leading to the ripening or blocking process, respectively. The aggregation process was simulated based on the Smoluchowski Population Balance Equation (PBE) and was coupled with the advection-dispersion-attachment equation (ADA) to form a family of partial differential equations that govern the migration of nanoparticles in porous media. For the solution of the PBE, an efficient finite volume solver was employed that significantly accelerated computation times, by reducing the number of participating equations, while maintaining the required accuracy. The developed model was applied to nanoparticle transport experimental data available in literature. The model successfully matched the breakthrough concentration curves, and estimated the corresponding nanoparticle diameter, proving its ability to capture the physical processes participating in nanoparticle transport.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes