Jiacheng Yu, Kai Liu, Hanrui Qiu, Mingjun Wang, Wenxi Tian, G.H. Su
{"title":"堵塞条件下整个低温冷冻机堆芯热液压特性的数值分析","authors":"Jiacheng Yu, Kai Liu, Hanrui Qiu, Mingjun Wang, Wenxi Tian, G.H. Su","doi":"10.1016/j.ijthermalsci.2024.109435","DOIUrl":null,"url":null,"abstract":"<div><div>Blockage accidents are critical scenarios in the design and safety analysis of lead-bismuth cooled fast reactor (LFR) core. Traditional analysis of blockage accidents in LFR focuses on localized, fine-scale computational fluid dynamics (CFD) simulations of single or three assemblies, but the analysis of the whole core scale impact caused by blockage accidents is insufficient. Therefore, this paper uses CorTAF-LBE, a three-dimensional thermal-hydraulic analysis code developed by XJTU-NuTHeL, to analyze the impact of blockage accidents on the whole core of the LFR. The reliability of the code in calculating thermal-hydraulic parameters under blockage accidents was validated based on the KALLA-THEADES and KALLA-IWF experiments. Taking the MYRRHA-FASTEF core as the object, simulations and analyses are conducted for various blockage scenarios with different lengths and positions. The results indicate that blockage accidents lead to an enlarged coolant temperature gradient at the core outlet. Lengthening the blockage results in an elevation of the peak temperature in the cladding. Under 2.06 % blockage at the center of the assembly, blockage in the middle of the heating segment poses the greatest threat to cladding integrity, with the maximum temperature reaching 1336.9K, an increase of 635.4K compared to normal operating conditions. Under 4.59 % blockage at the edge of the assembly, the maximum cladding temperature reaches 1381.8K, and the heat transfer rate of the inter-wrapper flow (IWF) adjacent to the blockage area is 24.2 % higher than under normal operation. Additionally, severe degradation in heat transfer downstream was not observed in several simulated blockage scenarios.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109435"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of thermal-hydraulic characteristics of the whole LFR core under blockage conditions\",\"authors\":\"Jiacheng Yu, Kai Liu, Hanrui Qiu, Mingjun Wang, Wenxi Tian, G.H. Su\",\"doi\":\"10.1016/j.ijthermalsci.2024.109435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Blockage accidents are critical scenarios in the design and safety analysis of lead-bismuth cooled fast reactor (LFR) core. Traditional analysis of blockage accidents in LFR focuses on localized, fine-scale computational fluid dynamics (CFD) simulations of single or three assemblies, but the analysis of the whole core scale impact caused by blockage accidents is insufficient. Therefore, this paper uses CorTAF-LBE, a three-dimensional thermal-hydraulic analysis code developed by XJTU-NuTHeL, to analyze the impact of blockage accidents on the whole core of the LFR. The reliability of the code in calculating thermal-hydraulic parameters under blockage accidents was validated based on the KALLA-THEADES and KALLA-IWF experiments. Taking the MYRRHA-FASTEF core as the object, simulations and analyses are conducted for various blockage scenarios with different lengths and positions. The results indicate that blockage accidents lead to an enlarged coolant temperature gradient at the core outlet. Lengthening the blockage results in an elevation of the peak temperature in the cladding. Under 2.06 % blockage at the center of the assembly, blockage in the middle of the heating segment poses the greatest threat to cladding integrity, with the maximum temperature reaching 1336.9K, an increase of 635.4K compared to normal operating conditions. Under 4.59 % blockage at the edge of the assembly, the maximum cladding temperature reaches 1381.8K, and the heat transfer rate of the inter-wrapper flow (IWF) adjacent to the blockage area is 24.2 % higher than under normal operation. Additionally, severe degradation in heat transfer downstream was not observed in several simulated blockage scenarios.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109435\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292400557X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400557X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical analysis of thermal-hydraulic characteristics of the whole LFR core under blockage conditions
Blockage accidents are critical scenarios in the design and safety analysis of lead-bismuth cooled fast reactor (LFR) core. Traditional analysis of blockage accidents in LFR focuses on localized, fine-scale computational fluid dynamics (CFD) simulations of single or three assemblies, but the analysis of the whole core scale impact caused by blockage accidents is insufficient. Therefore, this paper uses CorTAF-LBE, a three-dimensional thermal-hydraulic analysis code developed by XJTU-NuTHeL, to analyze the impact of blockage accidents on the whole core of the LFR. The reliability of the code in calculating thermal-hydraulic parameters under blockage accidents was validated based on the KALLA-THEADES and KALLA-IWF experiments. Taking the MYRRHA-FASTEF core as the object, simulations and analyses are conducted for various blockage scenarios with different lengths and positions. The results indicate that blockage accidents lead to an enlarged coolant temperature gradient at the core outlet. Lengthening the blockage results in an elevation of the peak temperature in the cladding. Under 2.06 % blockage at the center of the assembly, blockage in the middle of the heating segment poses the greatest threat to cladding integrity, with the maximum temperature reaching 1336.9K, an increase of 635.4K compared to normal operating conditions. Under 4.59 % blockage at the edge of the assembly, the maximum cladding temperature reaches 1381.8K, and the heat transfer rate of the inter-wrapper flow (IWF) adjacent to the blockage area is 24.2 % higher than under normal operation. Additionally, severe degradation in heat transfer downstream was not observed in several simulated blockage scenarios.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.