Suben Sri Shiam , Jyotisman Rath , Amirkianoosh Kiani
{"title":"锌离子电池用过渡金属氧化物阴极的研究进展--以安全性和毒性为重点的综述","authors":"Suben Sri Shiam , Jyotisman Rath , Amirkianoosh Kiani","doi":"10.1016/j.ijoes.2024.100804","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous Zinc-ion Batteries (AZIBs) have garnered significant attention as promising alternatives to conventional lithium-ion batteries, owing to their inherent advantages such as high energy density, affordability, and non-flammability. Despite their potential, achieving high-performance cathode materials remains a challenge, necessitating a delicate balance between electrochemical properties and considerations of environmental toxicity and human health. This comprehensive review delves into recent advancements in transition metal oxide cathodes, focusing on their potential to address safety, toxicity, cost, and feasibility concerns. The importance of toxicity has emerged prominently in recent years, fueled by increasing awareness of environmental and health impacts associated with energy storage technologies. Meanwhile, feasibility encompasses not only the electrochemical performance of cathode materials but also considerations of scalability, cost-effectiveness, and compatibility with large-scale energy storage applications. The review begins with a brief yet focused overview of Zinc batteries, providing an accurate classification, foundational understanding, and overview of current challenges. It then delves into contemporary concerns surrounding toxicity, cost, and feasibility of transition metal oxide cathode materials. In subsequent sections, various works involving oxide cathodes of Ti, Fe, Mn, and other relevant transition metals are thoroughly examined for their ability to meet these considerations. Lastly, key strategies directed towards mitigation of toxicity issues and cost-effective development of ZIBs is provided along with valuable insights into the future direction of AZIB research and development.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"19 11","pages":"Article 100804"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1452398124003468/pdfft?md5=28b60b3f4222f7d147e056add27d4d73&pid=1-s2.0-S1452398124003468-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in transition metal oxide cathodes for zinc-ion batteries – A review focusing on safety and toxicity\",\"authors\":\"Suben Sri Shiam , Jyotisman Rath , Amirkianoosh Kiani\",\"doi\":\"10.1016/j.ijoes.2024.100804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous Zinc-ion Batteries (AZIBs) have garnered significant attention as promising alternatives to conventional lithium-ion batteries, owing to their inherent advantages such as high energy density, affordability, and non-flammability. Despite their potential, achieving high-performance cathode materials remains a challenge, necessitating a delicate balance between electrochemical properties and considerations of environmental toxicity and human health. This comprehensive review delves into recent advancements in transition metal oxide cathodes, focusing on their potential to address safety, toxicity, cost, and feasibility concerns. The importance of toxicity has emerged prominently in recent years, fueled by increasing awareness of environmental and health impacts associated with energy storage technologies. Meanwhile, feasibility encompasses not only the electrochemical performance of cathode materials but also considerations of scalability, cost-effectiveness, and compatibility with large-scale energy storage applications. The review begins with a brief yet focused overview of Zinc batteries, providing an accurate classification, foundational understanding, and overview of current challenges. It then delves into contemporary concerns surrounding toxicity, cost, and feasibility of transition metal oxide cathode materials. In subsequent sections, various works involving oxide cathodes of Ti, Fe, Mn, and other relevant transition metals are thoroughly examined for their ability to meet these considerations. Lastly, key strategies directed towards mitigation of toxicity issues and cost-effective development of ZIBs is provided along with valuable insights into the future direction of AZIB research and development.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"19 11\",\"pages\":\"Article 100804\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003468/pdfft?md5=28b60b3f4222f7d147e056add27d4d73&pid=1-s2.0-S1452398124003468-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003468\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003468","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Advances in transition metal oxide cathodes for zinc-ion batteries – A review focusing on safety and toxicity
Aqueous Zinc-ion Batteries (AZIBs) have garnered significant attention as promising alternatives to conventional lithium-ion batteries, owing to their inherent advantages such as high energy density, affordability, and non-flammability. Despite their potential, achieving high-performance cathode materials remains a challenge, necessitating a delicate balance between electrochemical properties and considerations of environmental toxicity and human health. This comprehensive review delves into recent advancements in transition metal oxide cathodes, focusing on their potential to address safety, toxicity, cost, and feasibility concerns. The importance of toxicity has emerged prominently in recent years, fueled by increasing awareness of environmental and health impacts associated with energy storage technologies. Meanwhile, feasibility encompasses not only the electrochemical performance of cathode materials but also considerations of scalability, cost-effectiveness, and compatibility with large-scale energy storage applications. The review begins with a brief yet focused overview of Zinc batteries, providing an accurate classification, foundational understanding, and overview of current challenges. It then delves into contemporary concerns surrounding toxicity, cost, and feasibility of transition metal oxide cathode materials. In subsequent sections, various works involving oxide cathodes of Ti, Fe, Mn, and other relevant transition metals are thoroughly examined for their ability to meet these considerations. Lastly, key strategies directed towards mitigation of toxicity issues and cost-effective development of ZIBs is provided along with valuable insights into the future direction of AZIB research and development.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry