{"title":"具有循环和非局部动力学的双物种趋化竞争系统的全局动力学","authors":"Shuyan Qiu , Li Luo , Xinyu Tu","doi":"10.1016/j.jde.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>11</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>12</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>21</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>22</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> subject to homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>(</mo><mi>j</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics for a two-species chemotaxis-competition system with loop and nonlocal kinetics\",\"authors\":\"Shuyan Qiu , Li Luo , Xinyu Tu\",\"doi\":\"10.1016/j.jde.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>11</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>12</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>21</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>22</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> subject to homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>(</mo><mi>j</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global dynamics for a two-species chemotaxis-competition system with loop and nonlocal kinetics
In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics subject to homogeneous Neumann boundary conditions in a smooth bounded domain , where , , with . It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics