具有循环和非局部动力学的双物种趋化竞争系统的全局动力学

IF 2.4 2区 数学 Q1 MATHEMATICS
Shuyan Qiu , Li Luo , Xinyu Tu
{"title":"具有循环和非局部动力学的双物种趋化竞争系统的全局动力学","authors":"Shuyan Qiu ,&nbsp;Li Luo ,&nbsp;Xinyu Tu","doi":"10.1016/j.jde.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>11</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>12</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>21</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>22</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> subject to homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>(</mo><mi>j</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics for a two-species chemotaxis-competition system with loop and nonlocal kinetics\",\"authors\":\"Shuyan Qiu ,&nbsp;Li Luo ,&nbsp;Xinyu Tu\",\"doi\":\"10.1016/j.jde.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>11</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>12</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>21</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>22</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>w</mi><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>w</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> subject to homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span>, <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mi>d</mi><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>w</mi><mi>d</mi><mi>x</mi><mo>)</mo></mrow></math></span> with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>(</mo><mi>j</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo></math></span>. It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了具有循环和非局部动力学的双物种趋化-竞争系统{ut=Δu-χ11∇⋅(u∇v)-χ12∇⋅(u∇z)+f1(u,w),x∈Ω,t>;0,0=Δv-v+u+w,x∈Ω,t>0,wt=Δw-χ21∇⋅(w∇v)-χ22∇⋅(w∇z)+f2(u,w),x∈Ω,t>;0,0=Δz-z+u+w,x∈Ω,t>0,在光滑有界域Ω⊂Rn(n≥1)中服从均质 Neumann 边界条件,其中 χij>;0(i,j=1,2),f1(u,w)=u(a0-a1u-a2w-a3∫Ωudx-a4∫Ωwdx),f2(u,w)=w(b0-b1u-b2w-b3∫Ωudx-b4∫Ωwdx),其中 ai,bi>0(i=0,1,2),aj,bj∈R(j=3,4)。研究表明,如果参数满足某些条件,那么相应的初始边界值问题在任何空间维度上都有唯一的全局时间经典解,且该解均匀有界。此外,基于合适能量函数的构造,还考虑了共存和半共存稳态的全局渐近稳定问题。我们的结果概括并改进了之前文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics for a two-species chemotaxis-competition system with loop and nonlocal kinetics
In this paper, we consider the two-species chemotaxis-competition system with loop and nonlocal kinetics{ut=Δuχ11(uv)χ12(uz)+f1(u,w),xΩ,t>0,0=Δvv+u+w,xΩ,t>0,wt=Δwχ21(wv)χ22(wz)+f2(u,w),xΩ,t>0,0=Δzz+u+w,xΩ,t>0, subject to homogeneous Neumann boundary conditions in a smooth bounded domain ΩRn(n1), where χij>0(i,j=1,2), f1(u,w)=u(a0a1ua2wa3Ωudxa4Ωwdx), f2(u,w)=w(b0b1ub2wb3Ωudxb4Ωwdx) with ai,bi>0(i=0,1,2),aj,bjR(j=3,4). It is shown that if the parameters satisfy certain conditions, then the corresponding initial boundary value problem admits a unique global-in-time classical solution in any spatial dimension, which is uniformly bounded. Moreover, based on the construction of suitable energy functionals, the globally asymptotic stabilization of coexistence and semi-coexistence steady states is considered. Our results generalize and improve some previous results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信