固定维度下最小特征值最大化的快速算法

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Adam Brown , Aditi Laddha , Mohit Singh
{"title":"固定维度下最小特征值最大化的快速算法","authors":"Adam Brown ,&nbsp;Aditi Laddha ,&nbsp;Mohit Singh","doi":"10.1016/j.orl.2024.107186","DOIUrl":null,"url":null,"abstract":"<div><div>In the minimum eigenvalue problem, we are given a collection of vectors in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and the goal is to pick a subset <em>B</em> to maximize the minimum eigenvalue of the matrix <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>B</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⊤</mo></mrow></msubsup></math></span>. We give a <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><mo>)</mo></mrow></math></span>-time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span> times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107186"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast algorithms for maximizing the minimum eigenvalue in fixed dimension\",\"authors\":\"Adam Brown ,&nbsp;Aditi Laddha ,&nbsp;Mohit Singh\",\"doi\":\"10.1016/j.orl.2024.107186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the minimum eigenvalue problem, we are given a collection of vectors in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, and the goal is to pick a subset <em>B</em> to maximize the minimum eigenvalue of the matrix <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>B</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⊤</mo></mrow></msubsup></math></span>. We give a <span><math><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>d</mi><mo>)</mo><mo>/</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><mo>)</mo></mrow></math></span>-time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span> times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.</div></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"57 \",\"pages\":\"Article 107186\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724001226\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724001226","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在最小特征值问题中,我们给定了 Rd 中的一系列向量,目标是选取一个子集 B,使矩阵∑i∈Bvivi⊤的最小特征值最大化。我们给出了一个 O(nO(dlog(d)/ϵ2))时间的随机算法,它能找到一个受分区约束的赋值,其最小特征值至少是最优值的 (1-ϵ) 倍,而且概率很高。作为副产品,我们还得到了卡迪森-辛格问题算法版本的一种简单算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast algorithms for maximizing the minimum eigenvalue in fixed dimension
In the minimum eigenvalue problem, we are given a collection of vectors in Rd, and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix iBvivi. We give a O(nO(dlog(d)/ϵ2))-time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least (1ϵ) times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信