{"title":"农艺适应热胁迫:提早播种夏季作物","authors":"","doi":"10.1016/j.fcr.2024.109592","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Summer crops are exposed to heat and drought stresses at critical stages during and after flowering, and their intensity and frequency are likely to increase with climate change. Agronomic stress avoidance offers the opportunity to temporally separate critical crop stages from heat and drought events. However, it might require sowing cold-sensitive summer crops earlier into colder than recommended soil temperatures. There is a need to understand how cold is too cold to sow summer crops early in late winter as well as what are the yield benefits and risks.</div></div><div><h3>Objective</h3><div>Here, we quantify the likely benefits and trade-offs of sowing sorghum, a summer cereal, earlier to adapt to the increased frequency and intensity of heat and water stresses during flowering and grain filling.</div></div><div><h3>Methods</h3><div>Two years of multi-environment (<em>n</em>=32) genotype by management trials were conducted across the main sorghum growing regions of Australia. Environments (E) consisted of the combination of years, sites, three times of sowing (early, spring, and summer), and the use of supplementary irrigation. At each E a factorial combination of four plant populations (M) and eight commercial sorghum hybrids (G) were sown with three replications. Crop growth and yield components were measured, and the APSIM model was used to simulate all trials and treatments to quantify risks and derive insights into functional relationships between simulated and measured environmental covariates, and measured crop traits.</div></div><div><h3>Results</h3><div>The tested hybrids showed small differences in cold tolerance during crop establishment. Across the tested environments, the G×M combinations produced up to 60 % variation in treatment yields across environment yields, which varied between <0.5 to about 10 t ha<sup>−1</sup>; this translated into a ∼5.5-fold variation in water use efficiency. Significant G×E and M×E interactions were observed for grain yield components. No G×M or G×E×M interactions were observed on yield or yield components. Early sowing was associated with a reduced risk of heat stress and water use transfer from vegetative to reproductive stages. Early sowing in late winter or early spring resulted in no significant yield gain or loss when all sites and years were included in the analysis. However, early sowing yielded between 1 and 2 t ha<sup>−1</sup> more when the hottest sites and years were considered separately. This resulted from both the avoidance of heat stresses and milder or no terminal drought stresses.</div></div><div><h3>Conclusions</h3><div>Early sowing of sorghum can reduce the likelihood of heat stresses around flowering as well as the likelihood of terminal drought stresses. Advantages include reduced yield losses in the hottest years and a transfer of water use to grain filling stages, resulting in increased grain yield and improved grain quality parameters.</div></div><div><h3>Implications</h3><div>Early sowing, an agronomic adaptation, offers the opportunity to quickly adapt to the increase in the frequency and intensity of extreme hot events during critical crop stages. However, for the practice to be de-risked, there is a need to increase cold and chilling tolerance in sorghum and/or identify interventions that enhance seed germination and seedling vigour when the crop is sown early into cold soils.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378429024003459/pdfft?md5=84db86bb0c1347a703ed64733a51ebec&pid=1-s2.0-S0378429024003459-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Agronomic adaptations to heat stress: Sowing summer crops earlier\",\"authors\":\"\",\"doi\":\"10.1016/j.fcr.2024.109592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><div>Summer crops are exposed to heat and drought stresses at critical stages during and after flowering, and their intensity and frequency are likely to increase with climate change. Agronomic stress avoidance offers the opportunity to temporally separate critical crop stages from heat and drought events. However, it might require sowing cold-sensitive summer crops earlier into colder than recommended soil temperatures. There is a need to understand how cold is too cold to sow summer crops early in late winter as well as what are the yield benefits and risks.</div></div><div><h3>Objective</h3><div>Here, we quantify the likely benefits and trade-offs of sowing sorghum, a summer cereal, earlier to adapt to the increased frequency and intensity of heat and water stresses during flowering and grain filling.</div></div><div><h3>Methods</h3><div>Two years of multi-environment (<em>n</em>=32) genotype by management trials were conducted across the main sorghum growing regions of Australia. Environments (E) consisted of the combination of years, sites, three times of sowing (early, spring, and summer), and the use of supplementary irrigation. At each E a factorial combination of four plant populations (M) and eight commercial sorghum hybrids (G) were sown with three replications. Crop growth and yield components were measured, and the APSIM model was used to simulate all trials and treatments to quantify risks and derive insights into functional relationships between simulated and measured environmental covariates, and measured crop traits.</div></div><div><h3>Results</h3><div>The tested hybrids showed small differences in cold tolerance during crop establishment. Across the tested environments, the G×M combinations produced up to 60 % variation in treatment yields across environment yields, which varied between <0.5 to about 10 t ha<sup>−1</sup>; this translated into a ∼5.5-fold variation in water use efficiency. Significant G×E and M×E interactions were observed for grain yield components. No G×M or G×E×M interactions were observed on yield or yield components. Early sowing was associated with a reduced risk of heat stress and water use transfer from vegetative to reproductive stages. Early sowing in late winter or early spring resulted in no significant yield gain or loss when all sites and years were included in the analysis. However, early sowing yielded between 1 and 2 t ha<sup>−1</sup> more when the hottest sites and years were considered separately. This resulted from both the avoidance of heat stresses and milder or no terminal drought stresses.</div></div><div><h3>Conclusions</h3><div>Early sowing of sorghum can reduce the likelihood of heat stresses around flowering as well as the likelihood of terminal drought stresses. Advantages include reduced yield losses in the hottest years and a transfer of water use to grain filling stages, resulting in increased grain yield and improved grain quality parameters.</div></div><div><h3>Implications</h3><div>Early sowing, an agronomic adaptation, offers the opportunity to quickly adapt to the increase in the frequency and intensity of extreme hot events during critical crop stages. However, for the practice to be de-risked, there is a need to increase cold and chilling tolerance in sorghum and/or identify interventions that enhance seed germination and seedling vigour when the crop is sown early into cold soils.</div></div>\",\"PeriodicalId\":12143,\"journal\":{\"name\":\"Field Crops Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378429024003459/pdfft?md5=84db86bb0c1347a703ed64733a51ebec&pid=1-s2.0-S0378429024003459-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Field Crops Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378429024003459\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429024003459","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Agronomic adaptations to heat stress: Sowing summer crops earlier
Context
Summer crops are exposed to heat and drought stresses at critical stages during and after flowering, and their intensity and frequency are likely to increase with climate change. Agronomic stress avoidance offers the opportunity to temporally separate critical crop stages from heat and drought events. However, it might require sowing cold-sensitive summer crops earlier into colder than recommended soil temperatures. There is a need to understand how cold is too cold to sow summer crops early in late winter as well as what are the yield benefits and risks.
Objective
Here, we quantify the likely benefits and trade-offs of sowing sorghum, a summer cereal, earlier to adapt to the increased frequency and intensity of heat and water stresses during flowering and grain filling.
Methods
Two years of multi-environment (n=32) genotype by management trials were conducted across the main sorghum growing regions of Australia. Environments (E) consisted of the combination of years, sites, three times of sowing (early, spring, and summer), and the use of supplementary irrigation. At each E a factorial combination of four plant populations (M) and eight commercial sorghum hybrids (G) were sown with three replications. Crop growth and yield components were measured, and the APSIM model was used to simulate all trials and treatments to quantify risks and derive insights into functional relationships between simulated and measured environmental covariates, and measured crop traits.
Results
The tested hybrids showed small differences in cold tolerance during crop establishment. Across the tested environments, the G×M combinations produced up to 60 % variation in treatment yields across environment yields, which varied between <0.5 to about 10 t ha−1; this translated into a ∼5.5-fold variation in water use efficiency. Significant G×E and M×E interactions were observed for grain yield components. No G×M or G×E×M interactions were observed on yield or yield components. Early sowing was associated with a reduced risk of heat stress and water use transfer from vegetative to reproductive stages. Early sowing in late winter or early spring resulted in no significant yield gain or loss when all sites and years were included in the analysis. However, early sowing yielded between 1 and 2 t ha−1 more when the hottest sites and years were considered separately. This resulted from both the avoidance of heat stresses and milder or no terminal drought stresses.
Conclusions
Early sowing of sorghum can reduce the likelihood of heat stresses around flowering as well as the likelihood of terminal drought stresses. Advantages include reduced yield losses in the hottest years and a transfer of water use to grain filling stages, resulting in increased grain yield and improved grain quality parameters.
Implications
Early sowing, an agronomic adaptation, offers the opportunity to quickly adapt to the increase in the frequency and intensity of extreme hot events during critical crop stages. However, for the practice to be de-risked, there is a need to increase cold and chilling tolerance in sorghum and/or identify interventions that enhance seed germination and seedling vigour when the crop is sown early into cold soils.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.