用 CP2K 中的大典型集合方法模拟恒定电极电位下的电化学

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Ziwei Chai*,  and , Sandra Luber*, 
{"title":"用 CP2K 中的大典型集合方法模拟恒定电极电位下的电化学","authors":"Ziwei Chai*,&nbsp; and ,&nbsp;Sandra Luber*,&nbsp;","doi":"10.1021/acs.jctc.4c0067110.1021/acs.jctc.4c00671","DOIUrl":null,"url":null,"abstract":"<p >In electrochemical experiments, the number of electrons of the electrode immersed in the electrolyte is usually variable. Additionally, the numbers of adsorbed substances on the surface of the electrode, the solvent molecules, and counter charge ions in the near-surface region can also vary. Treating electrochemical solid–liquid interfaces with the typical fixed electron number density functional theory (DFT) approach tends to be a challenge. This can be addressed by using grand canonical ensemble approaches. We present the implementation of two grand canonical ensemble approaches in the open-source computational chemistry software CP2K that go beyond the existing canonical ensemble paradigm. The first approach is based on implicit solvent models and explicit atomistic solute (electrode with/without adsorbed species) models, and includes two recent developments: (a) grand canonical self-consistent field (GC-SCF) method (<i>J. Chem. Phys.</i> <b>2017,</b> <i>146,</i> 114104) allowing the electron number of the system to fluctuate naturally and accordingly with the experimental electrode potential, (b) planar counter charge (<i>J. Chem. Phys.</i> <b>2019,</b> <i>150,</i> 041722, <i>Phys. Rev. B</i> <b>2003,</b> <i>68,</i> 245416) salt model completely screening the net charge of the electrode model. In contrast with previous studies, in our implementation, the work function (WF) (absolute electrode potential if the potential drop at the electrolyte–vacuum interface is omitted) is the constrained quantity during an SCF optimization instead of the Fermi energy. The chemical potential of electrons (negative WF) is a natural variable of the grand potential in the GC ensemble of electronic states, and this method can easily achieve stable SCF convergence and obtain an electronic structure that precisely corresponds to a user-specified WF. The second approach referred to as the GC DFT molecular dynamics (DFT-MD) simulation scheme (<i>Phys. Rev. Lett.</i> <b>2002,</b> <i>88,</i> 213002, <i>J. Chem. Phys.</i> <b>2005,</b> <i>122,</i> 234505, <i>J. Am. Chem. Soc.</i> <b>2004,</b> <i>126</i> (12)<i>,</i> 3928–3938) is based on fully explicit modeling the solvent molecules and the ions and is used to calculate the electron chemical potential corresponding to an equilibrium electrochemical half-reaction (<i>M</i><sup>(<i>n</i>+<i>m</i>)+</sup> + <i>ne</i><sup>–</sup> ⇌ <i>M</i><sup><i>m</i>+</sup>) which involves DFT-MD, by allowing the number of electrons to vary during the DFT-MD simulation process. This opens the way for forefront electrochemical calculations in CP2K for a broad range of systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"20 18","pages":"8214–8228 8214–8228"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand Canonical Ensemble Approaches in CP2K for Modeling Electrochemistry at Constant Electrode Potentials\",\"authors\":\"Ziwei Chai*,&nbsp; and ,&nbsp;Sandra Luber*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.4c0067110.1021/acs.jctc.4c00671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In electrochemical experiments, the number of electrons of the electrode immersed in the electrolyte is usually variable. Additionally, the numbers of adsorbed substances on the surface of the electrode, the solvent molecules, and counter charge ions in the near-surface region can also vary. Treating electrochemical solid–liquid interfaces with the typical fixed electron number density functional theory (DFT) approach tends to be a challenge. This can be addressed by using grand canonical ensemble approaches. We present the implementation of two grand canonical ensemble approaches in the open-source computational chemistry software CP2K that go beyond the existing canonical ensemble paradigm. The first approach is based on implicit solvent models and explicit atomistic solute (electrode with/without adsorbed species) models, and includes two recent developments: (a) grand canonical self-consistent field (GC-SCF) method (<i>J. Chem. Phys.</i> <b>2017,</b> <i>146,</i> 114104) allowing the electron number of the system to fluctuate naturally and accordingly with the experimental electrode potential, (b) planar counter charge (<i>J. Chem. Phys.</i> <b>2019,</b> <i>150,</i> 041722, <i>Phys. Rev. B</i> <b>2003,</b> <i>68,</i> 245416) salt model completely screening the net charge of the electrode model. In contrast with previous studies, in our implementation, the work function (WF) (absolute electrode potential if the potential drop at the electrolyte–vacuum interface is omitted) is the constrained quantity during an SCF optimization instead of the Fermi energy. The chemical potential of electrons (negative WF) is a natural variable of the grand potential in the GC ensemble of electronic states, and this method can easily achieve stable SCF convergence and obtain an electronic structure that precisely corresponds to a user-specified WF. The second approach referred to as the GC DFT molecular dynamics (DFT-MD) simulation scheme (<i>Phys. Rev. Lett.</i> <b>2002,</b> <i>88,</i> 213002, <i>J. Chem. Phys.</i> <b>2005,</b> <i>122,</i> 234505, <i>J. Am. Chem. Soc.</i> <b>2004,</b> <i>126</i> (12)<i>,</i> 3928–3938) is based on fully explicit modeling the solvent molecules and the ions and is used to calculate the electron chemical potential corresponding to an equilibrium electrochemical half-reaction (<i>M</i><sup>(<i>n</i>+<i>m</i>)+</sup> + <i>ne</i><sup>–</sup> ⇌ <i>M</i><sup><i>m</i>+</sup>) which involves DFT-MD, by allowing the number of electrons to vary during the DFT-MD simulation process. This opens the way for forefront electrochemical calculations in CP2K for a broad range of systems.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"20 18\",\"pages\":\"8214–8228 8214–8228\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00671\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c00671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在电化学实验中,浸入电解质中的电极的电子数通常是可变的。此外,电极表面的吸附物质、溶剂分子和近表面区域的反电荷离子的数量也会变化。用典型的固定电子数密度泛函理论(DFT)方法处理电化学固液界面往往是一个挑战。这可以通过使用大规范集合方法来解决。我们介绍了开源计算化学软件 CP2K 中两种大规范集合方法的实现,它们超越了现有的规范集合范式。第一种方法基于隐式溶剂模型和显式原子溶质(带/不带吸附物种的电极)模型,包括两个最新进展:(a) 大规范自洽场(GC-SCF)方法(J. Chem. Phys. 2017, 146, 114104)允许系统的电子数随实验电极电势自然波动;(b) 平面反电荷(J. Chem. Phys. 2019, 150, 041722, Phys. Rev. B 2003, 68, 245416)盐模型完全屏蔽了电极模型的净电荷。与之前的研究不同,在我们的实现中,功函数(WF)(如果省略电解质-真空界面的电位降,则为绝对电极电位)是 SCF 优化过程中的约束量,而不是费米能。电子的化学势(负 WF)是 GC 电子态集合中大电势的自然变量,这种方法可以轻松实现稳定的 SCF 收敛,并获得与用户指定的 WF 精确对应的电子结构。第二种方法称为 GC DFT 分子动力学(DFT-MD)模拟方案(Phys. Rev. Lett.2005, 122, 234505, J. Am.Chem.Soc. 2004, 126 (12), 3928-3938)是基于溶剂分子和离子的完全显式建模,通过允许电子数在 DFT-MD 模拟过程中变化,用于计算与平衡电化学半反应(M(n+m)+ + ne- ⇌ Mm+)相对应的电子化学势。这为在 CP2K 中对各种体系进行前沿电化学计算开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grand Canonical Ensemble Approaches in CP2K for Modeling Electrochemistry at Constant Electrode Potentials

Grand Canonical Ensemble Approaches in CP2K for Modeling Electrochemistry at Constant Electrode Potentials

In electrochemical experiments, the number of electrons of the electrode immersed in the electrolyte is usually variable. Additionally, the numbers of adsorbed substances on the surface of the electrode, the solvent molecules, and counter charge ions in the near-surface region can also vary. Treating electrochemical solid–liquid interfaces with the typical fixed electron number density functional theory (DFT) approach tends to be a challenge. This can be addressed by using grand canonical ensemble approaches. We present the implementation of two grand canonical ensemble approaches in the open-source computational chemistry software CP2K that go beyond the existing canonical ensemble paradigm. The first approach is based on implicit solvent models and explicit atomistic solute (electrode with/without adsorbed species) models, and includes two recent developments: (a) grand canonical self-consistent field (GC-SCF) method (J. Chem. Phys. 2017, 146, 114104) allowing the electron number of the system to fluctuate naturally and accordingly with the experimental electrode potential, (b) planar counter charge (J. Chem. Phys. 2019, 150, 041722, Phys. Rev. B 2003, 68, 245416) salt model completely screening the net charge of the electrode model. In contrast with previous studies, in our implementation, the work function (WF) (absolute electrode potential if the potential drop at the electrolyte–vacuum interface is omitted) is the constrained quantity during an SCF optimization instead of the Fermi energy. The chemical potential of electrons (negative WF) is a natural variable of the grand potential in the GC ensemble of electronic states, and this method can easily achieve stable SCF convergence and obtain an electronic structure that precisely corresponds to a user-specified WF. The second approach referred to as the GC DFT molecular dynamics (DFT-MD) simulation scheme (Phys. Rev. Lett. 2002, 88, 213002, J. Chem. Phys. 2005, 122, 234505, J. Am. Chem. Soc. 2004, 126 (12), 3928–3938) is based on fully explicit modeling the solvent molecules and the ions and is used to calculate the electron chemical potential corresponding to an equilibrium electrochemical half-reaction (M(n+m)+ + neMm+) which involves DFT-MD, by allowing the number of electrons to vary during the DFT-MD simulation process. This opens the way for forefront electrochemical calculations in CP2K for a broad range of systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信