{"title":"混合纳米光子石墨烯系统:透皮给药的变革性创新。","authors":"Dilpreet Singh, Mandavi Pandey","doi":"10.2174/0118722105329862240919075834","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal Drug Delivery Systems (TDDSs) offer non-invasive administration and sustained drug release, enhancing patient compliance. However, the skin's natural barrier, particularly the stratum corneum, limits the effectiveness of TDDS for high molecular weight and hydrophilic substances. Innovations in material science, particularly hybrid nanophotonic graphene systems, present promising solutions. Nanophotonics generate localized photothermal effects to create microchannels in the skin, while graphene enhances permeability through its electrical and thermal conductivity. Hybrid nanophotonic systems, such as photonic crystals, plasmonic nanoparticles, metamaterials, quantum dots, nanowires, fiber optic nanosensors, and nanoantennas, offer precise control and real-time monitoring for applications in cancer therapy, chronic pain management, targeted drug delivery, and personalized medicine. This perspective examines the design, effectiveness, biocompatibility, and clinical implications of these hybrid systems, highlighting their potential to expand transdermal drug delivery and revolutionize treatment in personalized medicine. This particular formulation holds patentability, as supported by product patents that highlight the advancements in hybrid nanophotonic graphene systems for transdermal drug delivery.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Nanophotonic Graphene Systems: A Transformative Innovation for Transdermal Drug Delivery.\",\"authors\":\"Dilpreet Singh, Mandavi Pandey\",\"doi\":\"10.2174/0118722105329862240919075834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transdermal Drug Delivery Systems (TDDSs) offer non-invasive administration and sustained drug release, enhancing patient compliance. However, the skin's natural barrier, particularly the stratum corneum, limits the effectiveness of TDDS for high molecular weight and hydrophilic substances. Innovations in material science, particularly hybrid nanophotonic graphene systems, present promising solutions. Nanophotonics generate localized photothermal effects to create microchannels in the skin, while graphene enhances permeability through its electrical and thermal conductivity. Hybrid nanophotonic systems, such as photonic crystals, plasmonic nanoparticles, metamaterials, quantum dots, nanowires, fiber optic nanosensors, and nanoantennas, offer precise control and real-time monitoring for applications in cancer therapy, chronic pain management, targeted drug delivery, and personalized medicine. This perspective examines the design, effectiveness, biocompatibility, and clinical implications of these hybrid systems, highlighting their potential to expand transdermal drug delivery and revolutionize treatment in personalized medicine. This particular formulation holds patentability, as supported by product patents that highlight the advancements in hybrid nanophotonic graphene systems for transdermal drug delivery.</p>\",\"PeriodicalId\":49324,\"journal\":{\"name\":\"Recent Patents on Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Patents on Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722105329862240919075834\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105329862240919075834","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hybrid Nanophotonic Graphene Systems: A Transformative Innovation for Transdermal Drug Delivery.
Transdermal Drug Delivery Systems (TDDSs) offer non-invasive administration and sustained drug release, enhancing patient compliance. However, the skin's natural barrier, particularly the stratum corneum, limits the effectiveness of TDDS for high molecular weight and hydrophilic substances. Innovations in material science, particularly hybrid nanophotonic graphene systems, present promising solutions. Nanophotonics generate localized photothermal effects to create microchannels in the skin, while graphene enhances permeability through its electrical and thermal conductivity. Hybrid nanophotonic systems, such as photonic crystals, plasmonic nanoparticles, metamaterials, quantum dots, nanowires, fiber optic nanosensors, and nanoantennas, offer precise control and real-time monitoring for applications in cancer therapy, chronic pain management, targeted drug delivery, and personalized medicine. This perspective examines the design, effectiveness, biocompatibility, and clinical implications of these hybrid systems, highlighting their potential to expand transdermal drug delivery and revolutionize treatment in personalized medicine. This particular formulation holds patentability, as supported by product patents that highlight the advancements in hybrid nanophotonic graphene systems for transdermal drug delivery.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.