Jiewen Zhang, Yiwei Zhao, Yang Chen, Heng Li, Fangze Xing, Chengyan Liu, Xudong Duan, Huanshuai Guan, Ning Kong, Yiyang Li, Kunzheng Wang, Run Tian, Pei Yang
{"title":"机器人辅助全髋关节置换术患者术后关节功能的综合预测模型:结合放射组学和临床指标。","authors":"Jiewen Zhang, Yiwei Zhao, Yang Chen, Heng Li, Fangze Xing, Chengyan Liu, Xudong Duan, Huanshuai Guan, Ning Kong, Yiyang Li, Kunzheng Wang, Run Tian, Pei Yang","doi":"10.1007/s11701-024-02102-6","DOIUrl":null,"url":null,"abstract":"<p><p>Total hip arthroplasty (THA) effectively treats various end-stage hip conditions, offering pain relief and improved joint function. However, surgical outcomes are influenced by multifaceted factors. This research aims to create a predictive model, incorporating radiomic and clinical information, to forecast post-surgery joint function in robot-assisted THA (RA-THA) patients. The study set comprised 136 patients who underwent unilateral RA-THA, which were subsequently partitioned into a training set (n = 95) and a test set (n = 41) for analysis. Preoperative CT imaging was employed to derive 851 radiomic characteristics, selecting those with an intra-class correlation coefficient > 0.75 for analysis. Least absolute shrinkage and selection operator regression reduced redundancy to six significant radiomic features. Clinical data including preoperative Visual Analog Scale (VAS), Harris Hip Score (HHS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score were collected. Logistic regression identified significant predictors, and three models were developed. Receiver operating characteristic and decision curves evaluated the models. Preoperative VAS, HHS, WOMAC score, and radiomics feature scores were significant predictors. In the training set, the AUCs were 0.835 (clinical model), 0.757 (radiomic model), and 0.891 (combined model). In the test set, the AUCs were 0.777 (clinical model), 0.824 (radiomic model), and 0.881 (combined model). The constructed nomogram prediction model combines radiological features with relevant clinical data to accurately predict functional outcomes 3 years after RA-THA. This model has significant prediction accuracy and broad clinical application prospects and can provide a valuable reference for formulating personalized treatment plans and optimizing patient management strategies.</p>","PeriodicalId":47616,"journal":{"name":"Journal of Robotic Surgery","volume":"18 1","pages":"347"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive predictive model for postoperative joint function in robot-assisted total hip arthroplasty patients: combining radiomics and clinical indicators.\",\"authors\":\"Jiewen Zhang, Yiwei Zhao, Yang Chen, Heng Li, Fangze Xing, Chengyan Liu, Xudong Duan, Huanshuai Guan, Ning Kong, Yiyang Li, Kunzheng Wang, Run Tian, Pei Yang\",\"doi\":\"10.1007/s11701-024-02102-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Total hip arthroplasty (THA) effectively treats various end-stage hip conditions, offering pain relief and improved joint function. However, surgical outcomes are influenced by multifaceted factors. This research aims to create a predictive model, incorporating radiomic and clinical information, to forecast post-surgery joint function in robot-assisted THA (RA-THA) patients. The study set comprised 136 patients who underwent unilateral RA-THA, which were subsequently partitioned into a training set (n = 95) and a test set (n = 41) for analysis. Preoperative CT imaging was employed to derive 851 radiomic characteristics, selecting those with an intra-class correlation coefficient > 0.75 for analysis. Least absolute shrinkage and selection operator regression reduced redundancy to six significant radiomic features. Clinical data including preoperative Visual Analog Scale (VAS), Harris Hip Score (HHS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score were collected. Logistic regression identified significant predictors, and three models were developed. Receiver operating characteristic and decision curves evaluated the models. Preoperative VAS, HHS, WOMAC score, and radiomics feature scores were significant predictors. In the training set, the AUCs were 0.835 (clinical model), 0.757 (radiomic model), and 0.891 (combined model). In the test set, the AUCs were 0.777 (clinical model), 0.824 (radiomic model), and 0.881 (combined model). The constructed nomogram prediction model combines radiological features with relevant clinical data to accurately predict functional outcomes 3 years after RA-THA. This model has significant prediction accuracy and broad clinical application prospects and can provide a valuable reference for formulating personalized treatment plans and optimizing patient management strategies.</p>\",\"PeriodicalId\":47616,\"journal\":{\"name\":\"Journal of Robotic Surgery\",\"volume\":\"18 1\",\"pages\":\"347\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotic Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11701-024-02102-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11701-024-02102-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
A comprehensive predictive model for postoperative joint function in robot-assisted total hip arthroplasty patients: combining radiomics and clinical indicators.
Total hip arthroplasty (THA) effectively treats various end-stage hip conditions, offering pain relief and improved joint function. However, surgical outcomes are influenced by multifaceted factors. This research aims to create a predictive model, incorporating radiomic and clinical information, to forecast post-surgery joint function in robot-assisted THA (RA-THA) patients. The study set comprised 136 patients who underwent unilateral RA-THA, which were subsequently partitioned into a training set (n = 95) and a test set (n = 41) for analysis. Preoperative CT imaging was employed to derive 851 radiomic characteristics, selecting those with an intra-class correlation coefficient > 0.75 for analysis. Least absolute shrinkage and selection operator regression reduced redundancy to six significant radiomic features. Clinical data including preoperative Visual Analog Scale (VAS), Harris Hip Score (HHS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) score were collected. Logistic regression identified significant predictors, and three models were developed. Receiver operating characteristic and decision curves evaluated the models. Preoperative VAS, HHS, WOMAC score, and radiomics feature scores were significant predictors. In the training set, the AUCs were 0.835 (clinical model), 0.757 (radiomic model), and 0.891 (combined model). In the test set, the AUCs were 0.777 (clinical model), 0.824 (radiomic model), and 0.881 (combined model). The constructed nomogram prediction model combines radiological features with relevant clinical data to accurately predict functional outcomes 3 years after RA-THA. This model has significant prediction accuracy and broad clinical application prospects and can provide a valuable reference for formulating personalized treatment plans and optimizing patient management strategies.
期刊介绍:
The aim of the Journal of Robotic Surgery is to become the leading worldwide journal for publication of articles related to robotic surgery, encompassing surgical simulation and integrated imaging techniques. The journal provides a centralized, focused resource for physicians wishing to publish their experience or those wishing to avail themselves of the most up-to-date findings.The journal reports on advance in a wide range of surgical specialties including adult and pediatric urology, general surgery, cardiac surgery, gynecology, ENT, orthopedics and neurosurgery.The use of robotics in surgery is broad-based and will undoubtedly expand over the next decade as new technical innovations and techniques increase the applicability of its use. The journal intends to capture this trend as it develops.