基于深度学习重建的加速三维 T1 加权图像脑容量测量的可靠性。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Woojin Jung, Geunu Jeong, Sohyun Kim, Inpyeong Hwang, Seung Hong Choi, Young Hun Jeon, Kyu Sung Choi, Ji Ye Lee, Roh-Eul Yoo, Tae Jin Yun, Koung Mi Kang
{"title":"基于深度学习重建的加速三维 T1 加权图像脑容量测量的可靠性。","authors":"Woojin Jung, Geunu Jeong, Sohyun Kim, Inpyeong Hwang, Seung Hong Choi, Young Hun Jeon, Kyu Sung Choi, Ji Ye Lee, Roh-Eul Yoo, Tae Jin Yun, Koung Mi Kang","doi":"10.1007/s00234-024-03461-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The time-intensive nature of acquiring 3D T1-weighted MRI and analyzing brain volumetry limits quantitative evaluation of brain atrophy. We explore the feasibility and reliability of deep learning-based accelerated MRI scans for brain volumetry.</p><p><strong>Methods: </strong>This retrospective study collected 3D T1-weighted data using 3T from 42 participants for the simulated acceleration dataset and 48 for the validation dataset. The simulated acceleration dataset consists of three sets at different simulated acceleration levels (Simul-Accel) corresponding to level 1 (65% undersampling), 2 (70%), and 3 (75%). These images were then subjected to deep learning-based reconstruction (Simul-Accel-DL). Conventional images (Conv) without acceleration and DL were set as the reference. In the validation dataset, DICOM images were collected from Conv and accelerated scan with DL-based reconstruction (Accel-DL). The image quality of Simul-Accel-DL was evaluated using quantitative error metrics. Volumetric measurements were evaluated using intraclass correlation coefficients (ICCs) and linear regression analysis in both datasets. The volumes were estimated by two software, NeuroQuant and DeepBrain.</p><p><strong>Results: </strong>Simul-Accel-DL across all acceleration levels revealed comparable or better error metrics than Simul-Accel. In the simulated acceleration dataset, ICCs between Conv and Simul-Accel-DL in all ROIs exceeded 0.90 for volumes and 0.77 for normative percentiles at all acceleration levels. In the validation dataset, ICCs for volumes > 0.96, ICCs for normative percentiles > 0.89, and R<sup>2</sup> > 0.93 at all ROIs except pallidum demonstrated good agreement in both software.</p><p><strong>Conclusion: </strong>DL-based reconstruction achieves clinical feasibility of 3D T1 brain volumetric MRI by up to 75% acceleration relative to full-sampled acquisition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction.\",\"authors\":\"Woojin Jung, Geunu Jeong, Sohyun Kim, Inpyeong Hwang, Seung Hong Choi, Young Hun Jeon, Kyu Sung Choi, Ji Ye Lee, Roh-Eul Yoo, Tae Jin Yun, Koung Mi Kang\",\"doi\":\"10.1007/s00234-024-03461-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The time-intensive nature of acquiring 3D T1-weighted MRI and analyzing brain volumetry limits quantitative evaluation of brain atrophy. We explore the feasibility and reliability of deep learning-based accelerated MRI scans for brain volumetry.</p><p><strong>Methods: </strong>This retrospective study collected 3D T1-weighted data using 3T from 42 participants for the simulated acceleration dataset and 48 for the validation dataset. The simulated acceleration dataset consists of three sets at different simulated acceleration levels (Simul-Accel) corresponding to level 1 (65% undersampling), 2 (70%), and 3 (75%). These images were then subjected to deep learning-based reconstruction (Simul-Accel-DL). Conventional images (Conv) without acceleration and DL were set as the reference. In the validation dataset, DICOM images were collected from Conv and accelerated scan with DL-based reconstruction (Accel-DL). The image quality of Simul-Accel-DL was evaluated using quantitative error metrics. Volumetric measurements were evaluated using intraclass correlation coefficients (ICCs) and linear regression analysis in both datasets. The volumes were estimated by two software, NeuroQuant and DeepBrain.</p><p><strong>Results: </strong>Simul-Accel-DL across all acceleration levels revealed comparable or better error metrics than Simul-Accel. In the simulated acceleration dataset, ICCs between Conv and Simul-Accel-DL in all ROIs exceeded 0.90 for volumes and 0.77 for normative percentiles at all acceleration levels. In the validation dataset, ICCs for volumes > 0.96, ICCs for normative percentiles > 0.89, and R<sup>2</sup> > 0.93 at all ROIs except pallidum demonstrated good agreement in both software.</p><p><strong>Conclusion: </strong>DL-based reconstruction achieves clinical feasibility of 3D T1 brain volumetric MRI by up to 75% acceleration relative to full-sampled acquisition.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-024-03461-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03461-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

目的:获取三维 T1 加权磁共振成像并分析脑容量的时间密集性限制了对脑萎缩的定量评估。我们探索了基于深度学习的加速 MRI 扫描用于脑容量测量的可行性和可靠性:这项回顾性研究使用 3T 采集了 42 名参与者的三维 T1 加权数据用于模拟加速数据集,48 名参与者的数据用于验证数据集。模拟加速度数据集由不同模拟加速度级别(Simul-Accel)的三组数据组成,分别对应级别 1(65% 欠采样)、级别 2(70%)和级别 3(75%)。然后对这些图像进行基于深度学习的重建(Simul-Accel-DL)。没有加速和 DL 的常规图像(Conv)被设为参考。在验证数据集中,DICOM 图像来自 Conv 和基于 DL 重建的加速扫描(Accel-DL)。使用定量误差指标对 Simul-Accel-DL 的图像质量进行了评估。使用类内相关系数(ICC)和线性回归分析对两个数据集的容积测量进行评估。体积由 NeuroQuant 和 DeepBrain 两款软件估算:在所有加速度水平上,Simul-Accel-DL 都显示出与 Simul-Accel 相当或更好的误差指标。在模拟加速度数据集中,Conv 和 Simul-Accel-DL 在所有加速度级别的所有 ROI 中,体积的 ICC 超过 0.90,标准百分位数的 ICC 超过 0.77。在验证数据集中,体积的 ICC > 0.96,标准百分位数的 ICC > 0.89,除苍白球外所有 ROI 的 R2 > 0.93,这表明两种软件的一致性都很好:结论:基于 DL 的重建实现了三维 T1 脑容积磁共振成像的临床可行性,与全采样采集相比,加速高达 75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction.

Purpose: The time-intensive nature of acquiring 3D T1-weighted MRI and analyzing brain volumetry limits quantitative evaluation of brain atrophy. We explore the feasibility and reliability of deep learning-based accelerated MRI scans for brain volumetry.

Methods: This retrospective study collected 3D T1-weighted data using 3T from 42 participants for the simulated acceleration dataset and 48 for the validation dataset. The simulated acceleration dataset consists of three sets at different simulated acceleration levels (Simul-Accel) corresponding to level 1 (65% undersampling), 2 (70%), and 3 (75%). These images were then subjected to deep learning-based reconstruction (Simul-Accel-DL). Conventional images (Conv) without acceleration and DL were set as the reference. In the validation dataset, DICOM images were collected from Conv and accelerated scan with DL-based reconstruction (Accel-DL). The image quality of Simul-Accel-DL was evaluated using quantitative error metrics. Volumetric measurements were evaluated using intraclass correlation coefficients (ICCs) and linear regression analysis in both datasets. The volumes were estimated by two software, NeuroQuant and DeepBrain.

Results: Simul-Accel-DL across all acceleration levels revealed comparable or better error metrics than Simul-Accel. In the simulated acceleration dataset, ICCs between Conv and Simul-Accel-DL in all ROIs exceeded 0.90 for volumes and 0.77 for normative percentiles at all acceleration levels. In the validation dataset, ICCs for volumes > 0.96, ICCs for normative percentiles > 0.89, and R2 > 0.93 at all ROIs except pallidum demonstrated good agreement in both software.

Conclusion: DL-based reconstruction achieves clinical feasibility of 3D T1 brain volumetric MRI by up to 75% acceleration relative to full-sampled acquisition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信