{"title":"用于能源应用的扫描电化学显微镜的最新进展。","authors":"Qi Wang, Qianlin Tang, Peipei Li, Xiaoxia Bai","doi":"10.1088/1361-6528/ad7e30","DOIUrl":null,"url":null,"abstract":"<p><p>Scanning electrochemical microscopy (SECM) is a scanning probe technique capable of imaging substrate topography and measuring the local electrochemical reactivity of interfaces. Since introduced by Allen J. Bard and co-workers in 1989, it has expanded into a wide variety of fields, such as nanomaterial characterization, energy, kinetics, electrocatalysis, metal anti-corrosion, biology and instrumental development. SECM uses an ultra-microelectrode as the probe to record redox current during probe scanning across sample surfaces to obtain local topography and electrochemical reactivity of samples. Specifically, three main topics are reviewed and discussed: (1) the working principles and operating modes of SECM; (2) the recent developments in the application of SECM in energy science, including solar cell, rechargeable batteries, fuel cells and supercapacitors, with an emphasis on the last five years (2019-2023); (3) the perspectives and outlook of SECM in various energy devices. We anticipate that a wider adoption of SECM by the energy community will allow for the operando characterization of many types of reactions, and hold the potential to provide new insights into the structure/activity and composition/activity relationships.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in scanning electrochemical microscopy for energy applications.\",\"authors\":\"Qi Wang, Qianlin Tang, Peipei Li, Xiaoxia Bai\",\"doi\":\"10.1088/1361-6528/ad7e30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scanning electrochemical microscopy (SECM) is a scanning probe technique capable of imaging substrate topography and measuring the local electrochemical reactivity of interfaces. Since introduced by Allen J. Bard and co-workers in 1989, it has expanded into a wide variety of fields, such as nanomaterial characterization, energy, kinetics, electrocatalysis, metal anti-corrosion, biology and instrumental development. SECM uses an ultra-microelectrode as the probe to record redox current during probe scanning across sample surfaces to obtain local topography and electrochemical reactivity of samples. Specifically, three main topics are reviewed and discussed: (1) the working principles and operating modes of SECM; (2) the recent developments in the application of SECM in energy science, including solar cell, rechargeable batteries, fuel cells and supercapacitors, with an emphasis on the last five years (2019-2023); (3) the perspectives and outlook of SECM in various energy devices. We anticipate that a wider adoption of SECM by the energy community will allow for the operando characterization of many types of reactions, and hold the potential to provide new insights into the structure/activity and composition/activity relationships.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad7e30\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad7e30","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
扫描电化学显微镜 (SECM) 是一种扫描探针技术,能够对基底形貌进行成像,并测量界面的局部电化学反应性。自 Allen J. Bard 及其合作者于 1989 年推出该技术以来,它已扩展到纳米材料表征、能源、动力学、电催化、金属防腐、生物和仪器开发等多个领域。SECM 使用超微电极作为探针,在探针扫描样品表面的过程中记录氧化还原电流,从而获得样品的局部形貌和电化学反应性。具体来说,本文主要回顾和讨论了三个主题:(1) SECM 的工作原理和操作模式;(2) SECM 在能源科学(包括太阳能电池、充电电池、燃料电池和超级电容器)中应用的最新发展,重点是最近五年(2019-2023 年);(3) SECM 在各种能源设备中的前景和展望。我们预计,能源界更广泛地采用 SECM 将可对许多类型的反应进行操作表征,并有可能提供有关结构/活性和成分/活性关系的新见解。
Recent advances in scanning electrochemical microscopy for energy applications.
Scanning electrochemical microscopy (SECM) is a scanning probe technique capable of imaging substrate topography and measuring the local electrochemical reactivity of interfaces. Since introduced by Allen J. Bard and co-workers in 1989, it has expanded into a wide variety of fields, such as nanomaterial characterization, energy, kinetics, electrocatalysis, metal anti-corrosion, biology and instrumental development. SECM uses an ultra-microelectrode as the probe to record redox current during probe scanning across sample surfaces to obtain local topography and electrochemical reactivity of samples. Specifically, three main topics are reviewed and discussed: (1) the working principles and operating modes of SECM; (2) the recent developments in the application of SECM in energy science, including solar cell, rechargeable batteries, fuel cells and supercapacitors, with an emphasis on the last five years (2019-2023); (3) the perspectives and outlook of SECM in various energy devices. We anticipate that a wider adoption of SECM by the energy community will allow for the operando characterization of many types of reactions, and hold the potential to provide new insights into the structure/activity and composition/activity relationships.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.