作为抗菌剂的新型喹啉取代 5H-chromeno [2,3-b] 吡啶衍生物的合成、光谱表征、DFT 计算、硅-ADMET 和分子对接分析。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy
{"title":"作为抗菌剂的新型喹啉取代 5H-chromeno [2,3-b] 吡啶衍生物的合成、光谱表征、DFT 计算、硅-ADMET 和分子对接分析。","authors":"Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy","doi":"10.1007/s11030-024-10982-x","DOIUrl":null,"url":null,"abstract":"<p><p>A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including <sup>1</sup>H NMR, <sup>13</sup>C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents.\",\"authors\":\"Rajesh Kancherla, T N Lohith, Sushma Deshmukh, Shekhar Reddy Mulka, Gouthami Kuruvalli, M B Madhusudana Reddy\",\"doi\":\"10.1007/s11030-024-10982-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including <sup>1</sup>H NMR, <sup>13</sup>C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-10982-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10982-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设计并合成了一种方便、直接、有效的一步法反应,用于合成与生物相关的新型 2,4-二氨基-5-(8-羟基喹啉-7-基)-5H-色烯并[2,3-b] 吡啶-3-甲腈衍生物的三组分化合物。水杨醛 1、8-羟基喹啉 2、2-氨基丙烯-1,1,3-三甲腈 3 和催化量的三乙胺在乙醇中于 78 ℃ 下反应而合成。该方法有许多优点,包括使用廉价且无害的起始材料、单瓶反应、优化反应条件、终止中间体分离、易于操作、减少有机废品、无需色谱、缩短反应时间以及高官能团耐受性的定量产率。本研究提出了一种机理,并提供了相关的实验数据,包括 1H NMR、13C NMR、2D NMR(HMBC、COSY、HSQC)、质谱和红外光谱,这些数据用于表征完整的衍生物。通过琼脂孔扩散法,对所有合成的化合物与参考药物庆大霉素进行了体外抗菌活性评估,结果表明,化合物 4A 和 4B 对枯草芽孢杆菌、金黄色葡萄球菌、大肠杆菌和绿脓杆菌等细菌菌株的抗菌活性均优于庆大霉素。数据表明,化合物 4A、4F、4G、4 J 和 4K 对革兰氏阳性菌和革兰氏阴性菌始终具有很强的抗菌活性。此外,研究人员还通过金黄色葡萄球菌 DNA 回旋酶与环丙沙星复合物的晶体结构(PDB ID:2XCT)进行了分子对接研究,以深入了解最有潜力的化合物的结合模式。密度泛函理论(DFT)计算确定了合成的新型 2,4-二氨基-5-(8-羟基喹啉-7-基)-5H-色烯并[2,3-b] 吡啶-3-甲腈衍生物(4A-4 M)的各种分子特性。根据分子静电位图探索出的反应位点,对这些化合物的抗菌活性进行了筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents.

A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including 1H NMR, 13C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信