Aaron Yip, Owen D. McArthur, Kalista C. Ho, Marc G. Aucoin, Brian P. Ingalls
{"title":"通过共轭工程改造的废水细菌降解聚对苯二甲酸乙二醇酯 (PET) 塑料。","authors":"Aaron Yip, Owen D. McArthur, Kalista C. Ho, Marc G. Aucoin, Brian P. Ingalls","doi":"10.1111/1751-7915.70015","DOIUrl":null,"url":null,"abstract":"<p>Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5–7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70015","citationCount":"0","resultStr":"{\"title\":\"Degradation of polyethylene terephthalate (PET) plastics by wastewater bacteria engineered via conjugation\",\"authors\":\"Aaron Yip, Owen D. McArthur, Kalista C. Ho, Marc G. Aucoin, Brian P. Ingalls\",\"doi\":\"10.1111/1751-7915.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5–7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
污水处理厂是微塑料进入环境的主要途径之一。总体而言,微塑料是全球关注的污染物,对生态系统和人类健康构成风险。在此,我们介绍一种减少污水处理厂排放的微塑料污染的概念验证方法:向污水中的细菌输送重组 DNA,以实现聚对苯二甲酸乙二酯(PET)的降解。我们利用一种广宿主范围的共轭质粒,使城市污水样本中的各种细菌表达 FAST-PET酶,并将其释放到细胞外环境中。我们发现,从一些转共轭分离物中纯化出的 FAST-PET 酶可在 50°C 下 4 天内降解约 40% 厚度为 0.25 mm 的商用 PET 薄膜。然后,我们通过将分离物置于条件培养基中 5-7 天,证明了消费后 PET 产品的部分降解。这些结果对于通过使环境细菌降解 PET 来解决全球塑料污染问题具有广泛的意义。
Degradation of polyethylene terephthalate (PET) plastics by wastewater bacteria engineered via conjugation
Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5–7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes