热稳定的 CeO2 单位钯催化剂,用于在无外加氢的情况下将苯酚选择性胺化为芳香胺。

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yaqin Wang, Bingfeng Chen, Lina Li, Xuelei Mei, Yucheng Gu, Haihong Wu, Mingyuan He, Buxing Han
{"title":"热稳定的 CeO2 单位钯催化剂,用于在无外加氢的情况下将苯酚选择性胺化为芳香胺。","authors":"Yaqin Wang, Bingfeng Chen, Lina Li, Xuelei Mei, Yucheng Gu, Haihong Wu, Mingyuan He, Buxing Han","doi":"10.1002/anie.202412062","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO<sub>2</sub> (Pd<sub>1</sub>/CeO<sub>2</sub>) with excellent sintering resistance. The obtained Pd<sub>1</sub>/CeO<sub>2</sub> catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd<sub>1</sub>/CeO<sub>2</sub> are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermally-Stable Single-Site Pd on CeO<sub>2</sub> Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen.\",\"authors\":\"Yaqin Wang, Bingfeng Chen, Lina Li, Xuelei Mei, Yucheng Gu, Haihong Wu, Mingyuan He, Buxing Han\",\"doi\":\"10.1002/anie.202412062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO<sub>2</sub> (Pd<sub>1</sub>/CeO<sub>2</sub>) with excellent sintering resistance. The obtained Pd<sub>1</sub>/CeO<sub>2</sub> catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd<sub>1</sub>/CeO<sub>2</sub> are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202412062\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发从可再生酚类化合物中生产芳香胺类关键化学品的新路线是目前基于化石的路线(如硝基芳香族氢化)的良性替代方案,但由于 Ar-OH 键的解离能较高且难以控制副反应,因此具有挑战性。在此,我们开发了一种气溶胶化-热解策略来制备固定在 CeO2(Pd1/CeO2)上的高密度单位阳离子钯物种,其具有优异的抗烧结性。所获得的 Pd1/CeO2 催化剂在苯酚与胺的胺化反应中,无需外加氢源即可实现对重要芳香胺的显著选择性(产率高达 76.2%),而 Pd 纳米催化剂则主要提供苯基环饱和产物。Pd1/CeO2 的优异催化性能与具有丰富表面缺陷位点和合适酸碱特性的高负载 Pd 单位催化剂密切相关。本报告为利用可再生原料生产芳香胺提供了一条可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermally-Stable Single-Site Pd on CeO2 Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen.

Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信