Xiaohui Song, Rui Huang, Xingyu Zhang, Qiang Chang, Semi Kim, Daeun Jeong, Qian Hou, Juyeong Kim, Edison Huixiang Ang, Xiaowei Su, Xuyong Feng, Hongfa Xiang
{"title":"揭示金属有机框架结晶和纳米粒子掺入锂-S 电池的动态途径。","authors":"Xiaohui Song, Rui Huang, Xingyu Zhang, Qiang Chang, Semi Kim, Daeun Jeong, Qian Hou, Juyeong Kim, Edison Huixiang Ang, Xiaowei Su, Xuyong Feng, Hongfa Xiang","doi":"10.1002/advs.202407984","DOIUrl":null,"url":null,"abstract":"<p>Metal–organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid–liquid phase separation, particle attachment–coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium–sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 43","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Dynamic Pathways of Metal–Organic Framework Crystallization and Nanoparticle Incorporation for Li–S Batteries\",\"authors\":\"Xiaohui Song, Rui Huang, Xingyu Zhang, Qiang Chang, Semi Kim, Daeun Jeong, Qian Hou, Juyeong Kim, Edison Huixiang Ang, Xiaowei Su, Xuyong Feng, Hongfa Xiang\",\"doi\":\"10.1002/advs.202407984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal–organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid–liquid phase separation, particle attachment–coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium–sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"11 43\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407984\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407984","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
金属有机框架(MOFs)是各行各业高性能材料的多样化构件,但由于成核和生长知识方面的差距,人们对其结晶机理的了解仍然不够透彻。本研究利用原位液相透射电子显微镜(TEM)和低温透射电子显微镜(Cryo-TEM)对 MOF 的结构演化进行了探测,揭示了涉及液-液相分离、粒子附着-凝聚和表面层沉积的经典和非经典途径的混合。此外,利用超快高温烧结(UHS)技术将超小型钴纳米粒子(Co NPs)均匀地掺杂在氮掺杂硬碳纳米笼中,并通过三维电子断层扫描加以确认。锂硫电池测试表明,纳米笼-Co NP 结构具有优异的容量和循环稳定性,这归功于 Co NP 的小尺寸、均匀分散和纳米笼约束所产生的催化作用。研究结果为理解 MOF 结晶和通过超快烧结实现 Co NP 可调性提出了一个整体框架,有望推动材料科学的发展,并为未来的 MOF 合成策略和应用提供参考。
Unveiling the Dynamic Pathways of Metal–Organic Framework Crystallization and Nanoparticle Incorporation for Li–S Batteries
Metal–organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid–liquid phase separation, particle attachment–coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium–sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.