利用基于稳健变异的方法提高过渡金属自旋态能谱预测的准确性:密度泛函理论、CASPT2 和 MC-PDFT 应用于三-二亚胺铁(II)配合物案例研究。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Gheorghe Paveliuc, Latévi Max Lawson Daku
{"title":"利用基于稳健变异的方法提高过渡金属自旋态能谱预测的准确性:密度泛函理论、CASPT2 和 MC-PDFT 应用于三-二亚胺铁(II)配合物案例研究。","authors":"Gheorghe Paveliuc, Latévi Max Lawson Daku","doi":"10.1021/acs.jpca.4c04148","DOIUrl":null,"url":null,"abstract":"<p><p>Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [<i>J. Am. Chem. Soc.</i> <b>2017, 139,</b> 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-<i>o</i>-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-<i>a</i>:2', 1'-<i>c</i>]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference Δ<i>E</i><sub>HL</sub><sup>°</sup>. The issue can be circumvented by using a variation-based approach, wherein Δ<i>E</i><sub>HL</sub><sup>°</sup> is not directly evaluated but obtained from the estimate of its variation Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>) in series of related systems, which include one whose Δ<i>E</i><sub>HL</sub><sup>°</sup> is accurately known [<i>Phys. Chem. Chem. Phys.</i> <b>2013, 15,</b> 3752-3763; <i>J. Phys. Chem. A</i> <b>2022, 126,</b> 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>) in the pairs of complexes <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>p</mi><mi>y</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>d</mi><mi>a</mi><mi>f</mi><mi>o</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math>, <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>i</mi><mi>m</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>x</mi><mi>b</mi><mi>i</mi><mi>m</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math> and <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>i</mi><mi>m</mi><mi>z</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>e</mi><mi>t</mi><mi>b</mi><mi>i</mi><mi>m</mi><mi>z</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math>. In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>N</mi><mi>C</mi><mi>H</mi><mo>)</mo></mrow><mn>6</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math> [<i>J. Chem. Theory Comput.</i> <b>2012, 8,</b> 4216-4231], the Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>)-approach has been applied to the determination of Δ<i>E</i><sub>HL</sub><sup>°</sup> in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>N</mi><mi>C</mi><mi>H</mi><mo>)</mo></mrow><mn>6</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math> with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes.\",\"authors\":\"Gheorghe Paveliuc, Latévi Max Lawson Daku\",\"doi\":\"10.1021/acs.jpca.4c04148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [<i>J. Am. Chem. Soc.</i> <b>2017, 139,</b> 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-<i>o</i>-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-<i>a</i>:2', 1'-<i>c</i>]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference Δ<i>E</i><sub>HL</sub><sup>°</sup>. The issue can be circumvented by using a variation-based approach, wherein Δ<i>E</i><sub>HL</sub><sup>°</sup> is not directly evaluated but obtained from the estimate of its variation Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>) in series of related systems, which include one whose Δ<i>E</i><sub>HL</sub><sup>°</sup> is accurately known [<i>Phys. Chem. Chem. Phys.</i> <b>2013, 15,</b> 3752-3763; <i>J. Phys. Chem. A</i> <b>2022, 126,</b> 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>) in the pairs of complexes <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>p</mi><mi>y</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>d</mi><mi>a</mi><mi>f</mi><mi>o</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math>, <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>i</mi><mi>m</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>x</mi><mi>b</mi><mi>i</mi><mi>m</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math> and <math><mo>(</mo><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>b</mi><mi>i</mi><mi>m</mi><mi>z</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math>, <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>e</mi><mi>t</mi><mi>b</mi><mi>i</mi><mi>m</mi><mi>z</mi><mo>)</mo></mrow><mn>3</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>)</mo></math>. In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>N</mi><mi>C</mi><mi>H</mi><mo>)</mo></mrow><mn>6</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math> [<i>J. Chem. Theory Comput.</i> <b>2012, 8,</b> 4216-4231], the Δ(Δ<i>E</i><sub>HL</sub><sup>°</sup>)-approach has been applied to the determination of Δ<i>E</i><sub>HL</sub><sup>°</sup> in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from <math><msup><mrow><mo>[</mo><mrow><mi>F</mi><mi>e</mi></mrow><msub><mrow><mo>(</mo><mi>N</mi><mi>C</mi><mi>H</mi><mo>)</mo></mrow><mn>6</mn></msub><mo>]</mo></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math> with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04148\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04148","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为过渡金属配合物设计具有特定低自旋、高自旋或自旋交叉行为的配体是一项挑战。Phan 等人最近取得了一项重大进展[J. Am. Chem. Soc. 2017, 139, 6437-6447],他们证明了可以根据游离二亚胺中的 N-N 距离预测同极三二亚胺 Fe(II) 复合物的自旋状态。因此,他们可以预测 2,2'-联吡啶 (bpy)、2,2'-双咪唑 (bim) 和 2、(bimz)配体的复合物,到那些用改性类似物 4,5-二氮芴-9-酮 (dafo)、1,1'-(α,α'-邻氧基)-2,2'-双咪唑 (xbim) 和 2,3,5,6,8,9-六氢二咪唑并[1,2-a:2',1'-c]吡嗪(etbimz)。从理论上讲,难题在于如何准确测定 HS-LS 零点能差 ΔEHL°。这个问题可以通过使用基于变化的方法来解决,即不直接评估 ΔEHL°,而是通过估计其在一系列相关体系中的变化 Δ(ΔEHL°)来获得,这些体系中包括一个其 ΔEHL° 已被准确知晓的体系 [Phys.Chem.2013,15,3752-3763;J. Phys.A 2022, 126, 6221-6235].在本研究中,密度泛函理论(DFT)、二阶多参量扰动理论(CASPT2)的表述、在本研究中,密度泛函理论(DFT)、CASPT2 形式的二阶多参量扰动理论、多配位对 DFT(MC-PDFT)及其混合形式(HMC-PDFT)被用于确定成对配合物([Fe(bpy)3]2+, [Fe(dafo)3]2+), ([Fe(bim)3]2+, [Fe(xbim)3]2+) 和 ([Fe(bimz)3]2+, [Fe(etbimz)3]2+) 中的Δ(ΔEHL°)。在 DFT 中,我们使用了几种半局部函数及其全局混合函数,以及它们的 D2、D3、D3BJ 和 D4 色散校正形式;在 MC-PDFT 中,我们使用了不同的翻译和全翻译函数。这些结果相互一致,与实验结果非常吻合。它们对所用方法的关键细节的依赖性很小甚至消失:即对全局混合的精确交换贡献;CASPT2 计算中使用的电离势-电子亲和力偏移和基集;以及 MC-PDFT 和 HMC-PDFT 计算中使用的 CASSCF 波函数的活动空间。通过络合能分析,我们深入了解了伴随配体交换的自旋态能量变化。利用 CCSD(T) 对 [Fe(NCH)6]2+ 中 HS-LS 绝热能差的精确估计 [J. Chem. Theory Comput.CASPT2 和 DFT-D2 方法只能得出与实验一致的结果。这表明其他方法在处理分散性时存在局限性,无法准确描述从腈配体呈四方排列的[Fe(NCH)6]2+到大块配体呈三方排列的三-二亚胺配合物的自旋态能量变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes.

Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [J. Am. Chem. Soc. 2017, 139, 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-o-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2', 1'-c]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference ΔEHL°. The issue can be circumvented by using a variation-based approach, wherein ΔEHL° is not directly evaluated but obtained from the estimate of its variation Δ(ΔEHL°) in series of related systems, which include one whose ΔEHL° is accurately known [Phys. Chem. Chem. Phys. 2013, 15, 3752-3763; J. Phys. Chem. A 2022, 126, 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(ΔEHL°) in the pairs of complexes ([Fe(bpy)3]2+, [Fe(dafo)3]2+), ([Fe(bim)3]2+, [Fe(xbim)3]2+) and ([Fe(bimz)3]2+, [Fe(etbimz)3]2+). In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in [Fe(NCH)6]2+ [J. Chem. Theory Comput. 2012, 8, 4216-4231], the Δ(ΔEHL°)-approach has been applied to the determination of ΔEHL° in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from [Fe(NCH)6]2+ with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信