Chunxiao Jiang, Yan Yu, Jinbo Zhu, Lun Nie, Yiming Xu, Xiangxiang Liu, Ruoxin Li, Guangtao Chang
{"title":"无需化学预处理即可在涤纶织物上直接印制分散染料油墨。","authors":"Chunxiao Jiang, Yan Yu, Jinbo Zhu, Lun Nie, Yiming Xu, Xiangxiang Liu, Ruoxin Li, Guangtao Chang","doi":"10.1021/acs.langmuir.4c01586","DOIUrl":null,"url":null,"abstract":"<p><p>Direct inkjet digital printing is a relatively green and environmentally friendly textile printing method with a wide range of applications in the textile printing and dyeing industry. However, pretreatment of the fabric is required before digital printing, which will generate certain energy consumption and wastewater. In this study, a digital direct inkjet printing method was developed to improve the printing accuracy of poly(ethylene terephthalate) (PET) fabrics without any pretreatment. A kind of direct inkjet printing ink was prepared by the response change in temperature viscosity. The increase in viscosity inhibits ink bleeding on the fabric, thereby improving printing accuracy. A thermosensitive direct inkjet printing disperse dye ink was prepared by adding cetyltrimethylammonium bromide (CTAB) and 3-methylsalicylic acid (3MS) to the ink. By evaluating the changes in the ink particle size, shear viscosity, and temperature viscosity, it was found that this thermosensitive ink has an excellent average particle size and special changes in viscosity with increasing temperature. When this heat-sensitive ink is printed on a polyester fabric, the fabric does not need pretreatment to improve the clarity of printing, and the printed fabric has satisfactory color fastness to friction and washing.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Printing of Disperse Dye Inks to Polyester Fabrics without Chemical Pretreatment.\",\"authors\":\"Chunxiao Jiang, Yan Yu, Jinbo Zhu, Lun Nie, Yiming Xu, Xiangxiang Liu, Ruoxin Li, Guangtao Chang\",\"doi\":\"10.1021/acs.langmuir.4c01586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Direct inkjet digital printing is a relatively green and environmentally friendly textile printing method with a wide range of applications in the textile printing and dyeing industry. However, pretreatment of the fabric is required before digital printing, which will generate certain energy consumption and wastewater. In this study, a digital direct inkjet printing method was developed to improve the printing accuracy of poly(ethylene terephthalate) (PET) fabrics without any pretreatment. A kind of direct inkjet printing ink was prepared by the response change in temperature viscosity. The increase in viscosity inhibits ink bleeding on the fabric, thereby improving printing accuracy. A thermosensitive direct inkjet printing disperse dye ink was prepared by adding cetyltrimethylammonium bromide (CTAB) and 3-methylsalicylic acid (3MS) to the ink. By evaluating the changes in the ink particle size, shear viscosity, and temperature viscosity, it was found that this thermosensitive ink has an excellent average particle size and special changes in viscosity with increasing temperature. When this heat-sensitive ink is printed on a polyester fabric, the fabric does not need pretreatment to improve the clarity of printing, and the printed fabric has satisfactory color fastness to friction and washing.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c01586\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c01586","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Direct Printing of Disperse Dye Inks to Polyester Fabrics without Chemical Pretreatment.
Direct inkjet digital printing is a relatively green and environmentally friendly textile printing method with a wide range of applications in the textile printing and dyeing industry. However, pretreatment of the fabric is required before digital printing, which will generate certain energy consumption and wastewater. In this study, a digital direct inkjet printing method was developed to improve the printing accuracy of poly(ethylene terephthalate) (PET) fabrics without any pretreatment. A kind of direct inkjet printing ink was prepared by the response change in temperature viscosity. The increase in viscosity inhibits ink bleeding on the fabric, thereby improving printing accuracy. A thermosensitive direct inkjet printing disperse dye ink was prepared by adding cetyltrimethylammonium bromide (CTAB) and 3-methylsalicylic acid (3MS) to the ink. By evaluating the changes in the ink particle size, shear viscosity, and temperature viscosity, it was found that this thermosensitive ink has an excellent average particle size and special changes in viscosity with increasing temperature. When this heat-sensitive ink is printed on a polyester fabric, the fabric does not need pretreatment to improve the clarity of printing, and the printed fabric has satisfactory color fastness to friction and washing.