Shuilin Lin , Qinghua Song , Chao Ma , Jianliang Sun , Marian Wiercigroch
{"title":"考虑三维滚动变形的轴向推力模型","authors":"Shuilin Lin , Qinghua Song , Chao Ma , Jianliang Sun , Marian Wiercigroch","doi":"10.1016/j.ijmecsci.2024.109738","DOIUrl":null,"url":null,"abstract":"<div><div>The axial thrust force in the rolling deformation zone is influenced by interconnected factors, such as the metal transverse flow velocity, rolling pressure distribution, and strip shear deformation, often resulting in roll wear and a lower strip surface quality. Despite its significance in the design and manufacturing of strip mills, the available literature primarily focuses on the single-variable complete difference method as a means of evaluating this force. In this study, a novel approach is proposed for calculating the axial thrust force in the rolling deformation zone, incorporating the coupling variables of the 3D rolling space. The accuracy of the results is confirmed using data obtained from an industrial test rig, indicating that the axial thrust force in the rolling deformation zone can be precisely calculated through the integration of the energy method and the 3D difference method. The results indicate that the axial thrust force decreases with the transverse flow of the metal and the transverse shear deformation of the strip. It increases with a non-uniform distribution of rolling pressure and grows as the crossover angle increases. Conversely, the axial thrust force decreases with an increasing reduction rate of the strip. In general, a non-uniform distribution of rolling pressure enhances the axial thrust force, albeit with a minor effect when the crossover angle exceeds 0.8° Conversely, metal transverse flow significantly reduces the axial thrust force when the crossover angle is small (<em>φ</em> < 0.4°), but only marginally so when the crossover angle falls within the range of 0.4° to 1.0°</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"284 ","pages":"Article 109738"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of axial thrust force considering 3D rolling deformation\",\"authors\":\"Shuilin Lin , Qinghua Song , Chao Ma , Jianliang Sun , Marian Wiercigroch\",\"doi\":\"10.1016/j.ijmecsci.2024.109738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The axial thrust force in the rolling deformation zone is influenced by interconnected factors, such as the metal transverse flow velocity, rolling pressure distribution, and strip shear deformation, often resulting in roll wear and a lower strip surface quality. Despite its significance in the design and manufacturing of strip mills, the available literature primarily focuses on the single-variable complete difference method as a means of evaluating this force. In this study, a novel approach is proposed for calculating the axial thrust force in the rolling deformation zone, incorporating the coupling variables of the 3D rolling space. The accuracy of the results is confirmed using data obtained from an industrial test rig, indicating that the axial thrust force in the rolling deformation zone can be precisely calculated through the integration of the energy method and the 3D difference method. The results indicate that the axial thrust force decreases with the transverse flow of the metal and the transverse shear deformation of the strip. It increases with a non-uniform distribution of rolling pressure and grows as the crossover angle increases. Conversely, the axial thrust force decreases with an increasing reduction rate of the strip. In general, a non-uniform distribution of rolling pressure enhances the axial thrust force, albeit with a minor effect when the crossover angle exceeds 0.8° Conversely, metal transverse flow significantly reduces the axial thrust force when the crossover angle is small (<em>φ</em> < 0.4°), but only marginally so when the crossover angle falls within the range of 0.4° to 1.0°</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"284 \",\"pages\":\"Article 109738\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007793\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007793","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Modelling of axial thrust force considering 3D rolling deformation
The axial thrust force in the rolling deformation zone is influenced by interconnected factors, such as the metal transverse flow velocity, rolling pressure distribution, and strip shear deformation, often resulting in roll wear and a lower strip surface quality. Despite its significance in the design and manufacturing of strip mills, the available literature primarily focuses on the single-variable complete difference method as a means of evaluating this force. In this study, a novel approach is proposed for calculating the axial thrust force in the rolling deformation zone, incorporating the coupling variables of the 3D rolling space. The accuracy of the results is confirmed using data obtained from an industrial test rig, indicating that the axial thrust force in the rolling deformation zone can be precisely calculated through the integration of the energy method and the 3D difference method. The results indicate that the axial thrust force decreases with the transverse flow of the metal and the transverse shear deformation of the strip. It increases with a non-uniform distribution of rolling pressure and grows as the crossover angle increases. Conversely, the axial thrust force decreases with an increasing reduction rate of the strip. In general, a non-uniform distribution of rolling pressure enhances the axial thrust force, albeit with a minor effect when the crossover angle exceeds 0.8° Conversely, metal transverse flow significantly reduces the axial thrust force when the crossover angle is small (φ < 0.4°), but only marginally so when the crossover angle falls within the range of 0.4° to 1.0°
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.