{"title":"快速高效地去除有机磷污染物并回收有价值的元素:消除废水中有机磷的强化战略","authors":"","doi":"10.1016/j.watres.2024.122494","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the significant hazards of organophosphorus compounds (OPs) and the potential crisis of phosphorus (P) resource shortage, there is a great necessity to develop economically feasible, highly effective, and sustainable strategies to remove OPs and recover P resources. In this study, low-cost microscale zero-valent iron (mZVI) was used to activate hydrogen peroxide for the rapid and efficient elimination of Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) from the aquatic environment. Compared to the conventional Fenton reaction and commercial mZVI, mZVI/H<sub>2</sub>O<sub>2</sub>-based Fenton-like reaction exhibited superior removal performance for THPS. The removal mechanism of the mZVI/H<sub>2</sub>O<sub>2</sub> system for THPS was thoroughly elucidated through the identification of reactive oxygen species, characterization analysis, and theoretical calculation. Furthermore, the valuable components of the degradation products were successfully recovered through thermally induced precipitation of the sample followed by high-temperature calcination. The mZVI/H<sub>2</sub>O<sub>2</sub> system has demonstrated significant advantages in removing organic compounds from various types of actual wastewater and improving the biodegradability of the wastewater. This study presented an environmentally friendly and highly efficient strategy to eliminate OPs pollution and recover P resources. It also provided an easy-to-operate method for remediating actual industrial wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and efficient removal of organophosphorus pollutant and recovery of valuable elements: A boosted strategy for eliminating organophosphorus from wastewater\",\"authors\":\"\",\"doi\":\"10.1016/j.watres.2024.122494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considering the significant hazards of organophosphorus compounds (OPs) and the potential crisis of phosphorus (P) resource shortage, there is a great necessity to develop economically feasible, highly effective, and sustainable strategies to remove OPs and recover P resources. In this study, low-cost microscale zero-valent iron (mZVI) was used to activate hydrogen peroxide for the rapid and efficient elimination of Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) from the aquatic environment. Compared to the conventional Fenton reaction and commercial mZVI, mZVI/H<sub>2</sub>O<sub>2</sub>-based Fenton-like reaction exhibited superior removal performance for THPS. The removal mechanism of the mZVI/H<sub>2</sub>O<sub>2</sub> system for THPS was thoroughly elucidated through the identification of reactive oxygen species, characterization analysis, and theoretical calculation. Furthermore, the valuable components of the degradation products were successfully recovered through thermally induced precipitation of the sample followed by high-temperature calcination. The mZVI/H<sub>2</sub>O<sub>2</sub> system has demonstrated significant advantages in removing organic compounds from various types of actual wastewater and improving the biodegradability of the wastewater. This study presented an environmentally friendly and highly efficient strategy to eliminate OPs pollution and recover P resources. It also provided an easy-to-operate method for remediating actual industrial wastewater.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424013939\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424013939","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Rapid and efficient removal of organophosphorus pollutant and recovery of valuable elements: A boosted strategy for eliminating organophosphorus from wastewater
Considering the significant hazards of organophosphorus compounds (OPs) and the potential crisis of phosphorus (P) resource shortage, there is a great necessity to develop economically feasible, highly effective, and sustainable strategies to remove OPs and recover P resources. In this study, low-cost microscale zero-valent iron (mZVI) was used to activate hydrogen peroxide for the rapid and efficient elimination of Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) from the aquatic environment. Compared to the conventional Fenton reaction and commercial mZVI, mZVI/H2O2-based Fenton-like reaction exhibited superior removal performance for THPS. The removal mechanism of the mZVI/H2O2 system for THPS was thoroughly elucidated through the identification of reactive oxygen species, characterization analysis, and theoretical calculation. Furthermore, the valuable components of the degradation products were successfully recovered through thermally induced precipitation of the sample followed by high-temperature calcination. The mZVI/H2O2 system has demonstrated significant advantages in removing organic compounds from various types of actual wastewater and improving the biodegradability of the wastewater. This study presented an environmentally friendly and highly efficient strategy to eliminate OPs pollution and recover P resources. It also provided an easy-to-operate method for remediating actual industrial wastewater.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.