{"title":"合成修饰寡核苷酸过程中来自羟脯氨酸衍生物的杂质","authors":"Hao Liang, Dalong Hou, Siming Li, Simin Chen, Yaru Ma, Haiqi Liu, Fushun Fan, Yuqiang Wang, Changgeng Qian, Xinjian Liu","doi":"10.1021/acs.oprd.4c00295","DOIUrl":null,"url":null,"abstract":"This study explores the challenges of synthesizing modified oligonucleotides, particularly focusing on the impurities introduced when using hydroxyproline derivatives. We found that incorporating amino linkers, specifically the <i>trans</i>-4-hydroxy-<span>l</span>-prolinol backbone, leads to the formation of specific difficult-to-remove impurities. To address these issues, we recommend preloading the linker onto the solid-phase carrier to prevent the generation of phosphoramide impurities. Additionally, using a scavenger during the cleavage and deprotection steps is suggested to minimize unwanted reactions. A significant finding is the crucial role of triethylamine in the washing steps, where increasing its amount effectively prevents the formation of acrylonitrile and acetylation adducts. Through a series of experiments, we have identified the causes of these impurities and proposed strategies for their mitigation. These strategies ensure the efficient synthesis of oligonucleotides with improved purity, enhancing their potential for broader applications in biomedical research and biotechnology.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impurities from Hydroxyproline Derivatives in the Synthesis of Modified Oligonucleotides\",\"authors\":\"Hao Liang, Dalong Hou, Siming Li, Simin Chen, Yaru Ma, Haiqi Liu, Fushun Fan, Yuqiang Wang, Changgeng Qian, Xinjian Liu\",\"doi\":\"10.1021/acs.oprd.4c00295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the challenges of synthesizing modified oligonucleotides, particularly focusing on the impurities introduced when using hydroxyproline derivatives. We found that incorporating amino linkers, specifically the <i>trans</i>-4-hydroxy-<span>l</span>-prolinol backbone, leads to the formation of specific difficult-to-remove impurities. To address these issues, we recommend preloading the linker onto the solid-phase carrier to prevent the generation of phosphoramide impurities. Additionally, using a scavenger during the cleavage and deprotection steps is suggested to minimize unwanted reactions. A significant finding is the crucial role of triethylamine in the washing steps, where increasing its amount effectively prevents the formation of acrylonitrile and acetylation adducts. Through a series of experiments, we have identified the causes of these impurities and proposed strategies for their mitigation. These strategies ensure the efficient synthesis of oligonucleotides with improved purity, enhancing their potential for broader applications in biomedical research and biotechnology.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00295\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00295","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Impurities from Hydroxyproline Derivatives in the Synthesis of Modified Oligonucleotides
This study explores the challenges of synthesizing modified oligonucleotides, particularly focusing on the impurities introduced when using hydroxyproline derivatives. We found that incorporating amino linkers, specifically the trans-4-hydroxy-l-prolinol backbone, leads to the formation of specific difficult-to-remove impurities. To address these issues, we recommend preloading the linker onto the solid-phase carrier to prevent the generation of phosphoramide impurities. Additionally, using a scavenger during the cleavage and deprotection steps is suggested to minimize unwanted reactions. A significant finding is the crucial role of triethylamine in the washing steps, where increasing its amount effectively prevents the formation of acrylonitrile and acetylation adducts. Through a series of experiments, we have identified the causes of these impurities and proposed strategies for their mitigation. These strategies ensure the efficient synthesis of oligonucleotides with improved purity, enhancing their potential for broader applications in biomedical research and biotechnology.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.