双交联大孔气凝胶具有更强的机械耐久性,可用于太阳能驱动的高效海水和废水淡化

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiuyue Sun, Haowen Sun, Zihao Wo, Yier Su, Xiwen Zhang
{"title":"双交联大孔气凝胶具有更强的机械耐久性,可用于太阳能驱动的高效海水和废水淡化","authors":"Xiuyue Sun, Haowen Sun, Zihao Wo, Yier Su, Xiwen Zhang","doi":"10.1039/d4ta05732e","DOIUrl":null,"url":null,"abstract":"Solar-driven interfacial evaporation for seawater desalination is an effectively green measure to produce clean water and help alleviate freshwater scarcity. However, it is still a challenge to fabricate an interfacial solar evaporator that possesses a high evaporation rate with effective channels to resist clogging of salt accumulation during evaporation. Here, a dual-crosslinked aerogel with macropores is prepared using environmentally friendly biomass materials gelatin and cellulose nanofibril. It exhibits super salt resistance, durable mechanical strength and low thermal conductivity. In solar-driven interfacial evaporation, this aerogel achieves a peak evaporation rate of 2.14 kg·m-2·h-1 and a solar thermal conversion efficiency of 96.3% under 1 sun illumination in 3.5 wt% brine. The macroporous structure facilitates rapid convection and reflux, which is originating from ionic electrostatic effect and contributing to excellent salt resistance and long-term cycling performance of aerogel in seawater purification. Furthermore, the aerogel exhibits durability against strong acids, alkali and dyed wastewater, suggesting its potential for sustainable applications in advanced solar-driven desalination and wastewater treatment. This study provides new insights into the utilization of biomass-based photothermal aerogels for addressing global water challenges.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-crosslinked macroporous aerogel with enhanced mechanical durability for efficient solar-driven desalination of seawater and wastewater\",\"authors\":\"Xiuyue Sun, Haowen Sun, Zihao Wo, Yier Su, Xiwen Zhang\",\"doi\":\"10.1039/d4ta05732e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-driven interfacial evaporation for seawater desalination is an effectively green measure to produce clean water and help alleviate freshwater scarcity. However, it is still a challenge to fabricate an interfacial solar evaporator that possesses a high evaporation rate with effective channels to resist clogging of salt accumulation during evaporation. Here, a dual-crosslinked aerogel with macropores is prepared using environmentally friendly biomass materials gelatin and cellulose nanofibril. It exhibits super salt resistance, durable mechanical strength and low thermal conductivity. In solar-driven interfacial evaporation, this aerogel achieves a peak evaporation rate of 2.14 kg·m-2·h-1 and a solar thermal conversion efficiency of 96.3% under 1 sun illumination in 3.5 wt% brine. The macroporous structure facilitates rapid convection and reflux, which is originating from ionic electrostatic effect and contributing to excellent salt resistance and long-term cycling performance of aerogel in seawater purification. Furthermore, the aerogel exhibits durability against strong acids, alkali and dyed wastewater, suggesting its potential for sustainable applications in advanced solar-driven desalination and wastewater treatment. This study provides new insights into the utilization of biomass-based photothermal aerogels for addressing global water challenges.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta05732e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05732e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的界面蒸发海水淡化技术是生产清洁水和缓解淡水匮乏的有效绿色措施。然而,如何制造一种具有高蒸发率的界面太阳能蒸发器,并在蒸发过程中提供有效通道以防止盐分积聚堵塞,仍然是一项挑战。本文利用环保生物质材料明胶和纳米纤维素制备了一种具有大孔的双交联气凝胶。它具有超强的耐盐性、持久的机械强度和低导热性。在太阳能驱动的界面蒸发中,这种气凝胶在 3.5 wt%的盐水中的峰值蒸发率为 2.14 kg-m-2-h-1,在 1 太阳光照射下的太阳能热转换效率为 96.3%。大孔结构有利于快速对流和回流,这种离子静电效应使气凝胶在海水净化中具有优异的耐盐性和长期循环性能。此外,气凝胶对强酸、强碱和染色废水具有耐久性,这表明它在先进的太阳能驱动海水淡化和废水处理中具有可持续应用的潜力。这项研究为利用基于生物质的光热气凝胶应对全球水资源挑战提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual-crosslinked macroporous aerogel with enhanced mechanical durability for efficient solar-driven desalination of seawater and wastewater
Solar-driven interfacial evaporation for seawater desalination is an effectively green measure to produce clean water and help alleviate freshwater scarcity. However, it is still a challenge to fabricate an interfacial solar evaporator that possesses a high evaporation rate with effective channels to resist clogging of salt accumulation during evaporation. Here, a dual-crosslinked aerogel with macropores is prepared using environmentally friendly biomass materials gelatin and cellulose nanofibril. It exhibits super salt resistance, durable mechanical strength and low thermal conductivity. In solar-driven interfacial evaporation, this aerogel achieves a peak evaporation rate of 2.14 kg·m-2·h-1 and a solar thermal conversion efficiency of 96.3% under 1 sun illumination in 3.5 wt% brine. The macroporous structure facilitates rapid convection and reflux, which is originating from ionic electrostatic effect and contributing to excellent salt resistance and long-term cycling performance of aerogel in seawater purification. Furthermore, the aerogel exhibits durability against strong acids, alkali and dyed wastewater, suggesting its potential for sustainable applications in advanced solar-driven desalination and wastewater treatment. This study provides new insights into the utilization of biomass-based photothermal aerogels for addressing global water challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信