Yong Cheng, Shuqing Wang, Fei Chen, Jiahui Liang, Yan Zhang, Lei Zhang, Wangbao Yin, Suotang Jia, Liantuan Xiao
{"title":"用于远程细菌鉴定的独立式激光诱导击穿光谱仪 (LIBS) 系统。","authors":"Yong Cheng, Shuqing Wang, Fei Chen, Jiahui Liang, Yan Zhang, Lei Zhang, Wangbao Yin, Suotang Jia, Liantuan Xiao","doi":"10.1002/jbio.202400332","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bacteria are the primary cause of infectious diseases, making rapid and accurate identification crucial for timely pathogen diagnosis and disease control. However, traditional identification techniques such as polymerase chain reaction and loop-mediated isothermal amplification are complex, time-consuming, and pose infection risks. This study explores remote (~3 m) bacterial identification using laser-induced breakdown spectroscopy (LIBS) with a Cassegrain reflective telescope. Principal component analysis (PCA) was employed to reduce the dimensionality of the LIBS spectral data, and the accuracy of support vector machine (SVM) and Random Forest (RF) algorithms was compared. Multiple repeated experiments showed that the RF model achieved a classification accuracy, recall, precision, and <i>F</i>1-score of 99.81%, 99.80%, 99.79%, and 0.9979, respectively, outperforming the SVM model and providing more accurate remote bacterial identification. The method based on laser-induced plasma spectroscopy and machine learning has broad application prospects, supporting noncontact disease diagnosis, improving public health, and advancing medical research and technological development.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System for Remote Bacteria Identification\",\"authors\":\"Yong Cheng, Shuqing Wang, Fei Chen, Jiahui Liang, Yan Zhang, Lei Zhang, Wangbao Yin, Suotang Jia, Liantuan Xiao\",\"doi\":\"10.1002/jbio.202400332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Bacteria are the primary cause of infectious diseases, making rapid and accurate identification crucial for timely pathogen diagnosis and disease control. However, traditional identification techniques such as polymerase chain reaction and loop-mediated isothermal amplification are complex, time-consuming, and pose infection risks. This study explores remote (~3 m) bacterial identification using laser-induced breakdown spectroscopy (LIBS) with a Cassegrain reflective telescope. Principal component analysis (PCA) was employed to reduce the dimensionality of the LIBS spectral data, and the accuracy of support vector machine (SVM) and Random Forest (RF) algorithms was compared. Multiple repeated experiments showed that the RF model achieved a classification accuracy, recall, precision, and <i>F</i>1-score of 99.81%, 99.80%, 99.79%, and 0.9979, respectively, outperforming the SVM model and providing more accurate remote bacterial identification. The method based on laser-induced plasma spectroscopy and machine learning has broad application prospects, supporting noncontact disease diagnosis, improving public health, and advancing medical research and technological development.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400332\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400332","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Stand-Off Laser-Induced Breakdown Spectroscopy (LIBS) System for Remote Bacteria Identification
Bacteria are the primary cause of infectious diseases, making rapid and accurate identification crucial for timely pathogen diagnosis and disease control. However, traditional identification techniques such as polymerase chain reaction and loop-mediated isothermal amplification are complex, time-consuming, and pose infection risks. This study explores remote (~3 m) bacterial identification using laser-induced breakdown spectroscopy (LIBS) with a Cassegrain reflective telescope. Principal component analysis (PCA) was employed to reduce the dimensionality of the LIBS spectral data, and the accuracy of support vector machine (SVM) and Random Forest (RF) algorithms was compared. Multiple repeated experiments showed that the RF model achieved a classification accuracy, recall, precision, and F1-score of 99.81%, 99.80%, 99.79%, and 0.9979, respectively, outperforming the SVM model and providing more accurate remote bacterial identification. The method based on laser-induced plasma spectroscopy and machine learning has broad application prospects, supporting noncontact disease diagnosis, improving public health, and advancing medical research and technological development.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.