{"title":"基于广义比例积分扩展状态观测器的全驱动系统控制器设计","authors":"Hong Jiang , Guangren Duan , Mingzhe Hou","doi":"10.1016/j.isatra.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a feedback controller based on the extended state observer is proposed for fully actuated systems. First, a generalized proportional–integral observer is designed to estimate states and disturbances simultaneously. Using the linear parameter varying approach and the convexity principle, a linear matrix inequality condition is given to obtain the observer gains. Second, on the basis of the full-actuation property and the estimated states, a feedback controller, utilizing estimated disturbances to compensate for system disturbances, is designed to make all the states of the closed-loop system uniformly ultimately bounded. In addition, if disturbances are constant or slow time-varying, the observation errors and the states of closed-loop system are all exponentially convergent. Two illustrations are provided to show the validity and practicality of the proposed approach. Simulation results show that the estimated disturbances can follow the true values with relatively small errors, so compensating the system disturbances with estimated values can effectively reduce the ultimate bounds of states of the closed-loop system.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"155 ","pages":"Pages 137-147"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized proportional–integral extended state observer-based controller design for fully actuated systems\",\"authors\":\"Hong Jiang , Guangren Duan , Mingzhe Hou\",\"doi\":\"10.1016/j.isatra.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a feedback controller based on the extended state observer is proposed for fully actuated systems. First, a generalized proportional–integral observer is designed to estimate states and disturbances simultaneously. Using the linear parameter varying approach and the convexity principle, a linear matrix inequality condition is given to obtain the observer gains. Second, on the basis of the full-actuation property and the estimated states, a feedback controller, utilizing estimated disturbances to compensate for system disturbances, is designed to make all the states of the closed-loop system uniformly ultimately bounded. In addition, if disturbances are constant or slow time-varying, the observation errors and the states of closed-loop system are all exponentially convergent. Two illustrations are provided to show the validity and practicality of the proposed approach. Simulation results show that the estimated disturbances can follow the true values with relatively small errors, so compensating the system disturbances with estimated values can effectively reduce the ultimate bounds of states of the closed-loop system.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"155 \",\"pages\":\"Pages 137-147\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824004415\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824004415","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Generalized proportional–integral extended state observer-based controller design for fully actuated systems
In this paper, a feedback controller based on the extended state observer is proposed for fully actuated systems. First, a generalized proportional–integral observer is designed to estimate states and disturbances simultaneously. Using the linear parameter varying approach and the convexity principle, a linear matrix inequality condition is given to obtain the observer gains. Second, on the basis of the full-actuation property and the estimated states, a feedback controller, utilizing estimated disturbances to compensate for system disturbances, is designed to make all the states of the closed-loop system uniformly ultimately bounded. In addition, if disturbances are constant or slow time-varying, the observation errors and the states of closed-loop system are all exponentially convergent. Two illustrations are provided to show the validity and practicality of the proposed approach. Simulation results show that the estimated disturbances can follow the true values with relatively small errors, so compensating the system disturbances with estimated values can effectively reduce the ultimate bounds of states of the closed-loop system.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.