{"title":"用于非高斯噪声下机动目标跟踪的广义交互多模型卡尔曼滤波算法。","authors":"Jie Wang, Jiacheng He, Bei Peng, Gang Wang","doi":"10.1016/j.isatra.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises.\",\"authors\":\"Jie Wang, Jiacheng He, Bei Peng, Gang Wang\",\"doi\":\"10.1016/j.isatra.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.09.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises.
The traditional interacting multiple model Kalman filtering algorithm (IMM-KF) can deal with the maneuvering target problem under Gaussian noise by soft switching among possible motion models. In practice, its performance is likely to degrade when handling non-Gaussian noise. We introduce the Gaussian mixture model (GMM) into the IMM-KF, and the GMM is utilized to model the non-Gaussian measurement noise as a mixture of multiple Gaussian probability densities with a certain probability. Then, a GIMM framework is proposed that enables accurate switching and fusion among multiple possible motion and noise models. And combined with Kalman filtering (KF), a GIMM-KF algorithm is proposed that enables accurate state estimation of maneuvering targets under non-Gaussian noise conditions. Subsequently, the provided simulations and experiments validate that the GIMM-KF algorithm outperforms existing methods in terms of accuracy, stability and robustness.