利用磁感应和生物打印技术制造用于组织再生的三维仿生平滑肌

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2024-09-09 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0076
Yang Luo, Zeming Hu, Renhao Ni, Rong Xu, Jianmin Zhao, Peipei Feng, Tong Zhu, Yaoqi Chen, Jie Yao, Yudong Yao, Lu Yang, Hua Zhang, Yabin Zhu
{"title":"利用磁感应和生物打印技术制造用于组织再生的三维仿生平滑肌","authors":"Yang Luo, Zeming Hu, Renhao Ni, Rong Xu, Jianmin Zhao, Peipei Feng, Tong Zhu, Yaoqi Chen, Jie Yao, Yudong Yao, Lu Yang, Hua Zhang, Yabin Zhu","doi":"10.34133/bmr.0076","DOIUrl":null,"url":null,"abstract":"<p><p>Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe<sub>3</sub>O<sub>4</sub>) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe<sub>3</sub>O<sub>4</sub> self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0076"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration.\",\"authors\":\"Yang Luo, Zeming Hu, Renhao Ni, Rong Xu, Jianmin Zhao, Peipei Feng, Tong Zhu, Yaoqi Chen, Jie Yao, Yudong Yao, Lu Yang, Hua Zhang, Yabin Zhu\",\"doi\":\"10.34133/bmr.0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe<sub>3</sub>O<sub>4</sub>) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe<sub>3</sub>O<sub>4</sub> self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"28 \",\"pages\":\"0076\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

平滑肌在肠胃蠕动、组织收缩和松弛中发挥着重要作用,但缺乏足够的自我修复能力来解决肌肉大面积缺损的问题。工程支架被广泛用于修复肌肉组织。然而,迄今为止的研究表明,这些工程支架侧重于二维(2D)的细胞排列,无法引导肌肉细胞在三维区域排列,这对于重塑肌肉结构和恢复肌肉功能(如收缩和放松)是无法解决的。在这里,我们引入了一种氧化铁(Fe3O4)丝嵌入明胶(Gel)-丝纤维蛋白复合水凝胶,其中定向的Fe3O4可自组装并作为微/纳米尺度的几何线索诱导细胞排列生长。通过将嵌入式三维生物打印与磁感应技术相结合,该水凝胶支架可设计用于制造排列整齐或各向异性的肌肉,以适应人体肌肉组织的特殊结构。特别是,生物打印的肌肉样基质能有效促进平滑肌细胞(SMCs)的自组织和骨髓间充质干细胞(BMSCs)向SMCs的定向分化。这项工作为构建工程生物仿生肌肉提供了一种新方法,为未来肌肉相关疾病的临床治疗带来了重大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration.

Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信