Marita Vella, Iain W Manfield, Brandon C Seychell, Chi H Trinh, Robert Rambo, G Nasir Khan, Josanne Vassallo, Thérèse Hunter, Gary J Hunter
{"title":"芳基烃受体相互作用蛋白 N-域的突变会影响与热休克蛋白 90β 和磷酸二酯酶 4A5 的相互作用。","authors":"Marita Vella, Iain W Manfield, Brandon C Seychell, Chi H Trinh, Robert Rambo, G Nasir Khan, Josanne Vassallo, Thérèse Hunter, Gary J Hunter","doi":"10.1016/j.biochi.2024.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>The aryl hydrocarbon receptor interacting protein (AIP) is a cytoplasmic molecular co-chaperone and tumour suppressor that assists in protein stability and complex formation involving the aryl hydrocarbon receptor. Germline mutations in the AIP gene predispose to pituitary tumourigenesis with patients exhibiting an aggressive clinical phenotype. Full length AIP proteins harbouring N-domain mutations (R9Q, R16H, V49 M and K103R) were purified from E.coli utilizing a methodology that maintained structural integrity and monomeric stability. Mutations did not significantly affect the thermal stability of the protein and caused no overall disruptive effect in the protein structure. The mutations studied lowered the binding affinity of AIP towards two of its binding partners; heat shock protein 90β and phosphodiesterase 4A5 (PDE4A5). The inhibition of phosphodiesterase activity by AIP was also greatly reduced by all mutants. While previously published data has mainly concentrated on the tetratricopeptide repeats of the C-domain of AIP, we present clear evidence that AIP N-domain mutations play a significant role in two protein:protein interactions with partner proteins. The complex interactome of AIP suggests that any observable change in one or more of its binding partners cannot be disregarded as it may have repercussions on other biochemical pathways.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"114-126"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutations in the N-domain of aryl hydrocarbon receptor interacting protein affect interactions with heat shock protein 90β and phosphodiesterase 4A5.\",\"authors\":\"Marita Vella, Iain W Manfield, Brandon C Seychell, Chi H Trinh, Robert Rambo, G Nasir Khan, Josanne Vassallo, Thérèse Hunter, Gary J Hunter\",\"doi\":\"10.1016/j.biochi.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aryl hydrocarbon receptor interacting protein (AIP) is a cytoplasmic molecular co-chaperone and tumour suppressor that assists in protein stability and complex formation involving the aryl hydrocarbon receptor. Germline mutations in the AIP gene predispose to pituitary tumourigenesis with patients exhibiting an aggressive clinical phenotype. Full length AIP proteins harbouring N-domain mutations (R9Q, R16H, V49 M and K103R) were purified from E.coli utilizing a methodology that maintained structural integrity and monomeric stability. Mutations did not significantly affect the thermal stability of the protein and caused no overall disruptive effect in the protein structure. The mutations studied lowered the binding affinity of AIP towards two of its binding partners; heat shock protein 90β and phosphodiesterase 4A5 (PDE4A5). The inhibition of phosphodiesterase activity by AIP was also greatly reduced by all mutants. While previously published data has mainly concentrated on the tetratricopeptide repeats of the C-domain of AIP, we present clear evidence that AIP N-domain mutations play a significant role in two protein:protein interactions with partner proteins. The complex interactome of AIP suggests that any observable change in one or more of its binding partners cannot be disregarded as it may have repercussions on other biochemical pathways.</p>\",\"PeriodicalId\":93898,\"journal\":{\"name\":\"Biochimie\",\"volume\":\" \",\"pages\":\"114-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biochi.2024.09.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2024.09.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Mutations in the N-domain of aryl hydrocarbon receptor interacting protein affect interactions with heat shock protein 90β and phosphodiesterase 4A5.
The aryl hydrocarbon receptor interacting protein (AIP) is a cytoplasmic molecular co-chaperone and tumour suppressor that assists in protein stability and complex formation involving the aryl hydrocarbon receptor. Germline mutations in the AIP gene predispose to pituitary tumourigenesis with patients exhibiting an aggressive clinical phenotype. Full length AIP proteins harbouring N-domain mutations (R9Q, R16H, V49 M and K103R) were purified from E.coli utilizing a methodology that maintained structural integrity and monomeric stability. Mutations did not significantly affect the thermal stability of the protein and caused no overall disruptive effect in the protein structure. The mutations studied lowered the binding affinity of AIP towards two of its binding partners; heat shock protein 90β and phosphodiesterase 4A5 (PDE4A5). The inhibition of phosphodiesterase activity by AIP was also greatly reduced by all mutants. While previously published data has mainly concentrated on the tetratricopeptide repeats of the C-domain of AIP, we present clear evidence that AIP N-domain mutations play a significant role in two protein:protein interactions with partner proteins. The complex interactome of AIP suggests that any observable change in one or more of its binding partners cannot be disregarded as it may have repercussions on other biochemical pathways.