基于 Barnase-Barstar 的预靶向策略用于增强体内抗肿瘤治疗。

G M Proshkina, E I Shramova, A B Mirkasyimov, O Yu Griaznova, E V Konovalova, A A Schulga, S M Deyev
{"title":"基于 Barnase-Barstar 的预靶向策略用于增强体内抗肿瘤治疗。","authors":"G M Proshkina, E I Shramova, A B Mirkasyimov, O Yu Griaznova, E V Konovalova, A A Schulga, S M Deyev","doi":"10.1016/j.biochi.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>There is a great need for novel approaches to the treatment of epithelial ovarian carcinoma, which is the leading cause of mortality from gynecological malignancies. In this study, the pre-targeting technology was used to enhance the in vivo targeting of cytotoxic module composed of nanoliposomes loaded with a truncated form of Pseudomonas aeruginosa exotoxin A (PE40) to cancer cells. Pre-targeting system used in this study is composed of bacterial ribonuclease Barnase and its natural antitoxin Barstar. Barstar, genetically fused to various engineered scaffold proteins specific to tumor-associated antigens (HER2, EpCAM) serves as a primary module for precise cancer cell recognition. Barnase conjugated to a therapeutic agent serves as a cytotoxic or secondary module for malignant cell elimination. Due to strong non-covalent interaction (K<sub>D</sub>10<sup>-14</sup> M) of Barstar and Barnase, the primary and secondary modules efficiently interact with each other on the cell surface, which has been proven by confocal microscopy and flow cytometry. Using mice with SKOV-3 ovarian cancer xenografts, we have shown that regardless of the targeting module, the pre-targeting approach is much more effective than a single-step active targeting.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Barnase-Barstar-based pre-targeting strategy for enhanced antitumor therapy in vivo.\",\"authors\":\"G M Proshkina, E I Shramova, A B Mirkasyimov, O Yu Griaznova, E V Konovalova, A A Schulga, S M Deyev\",\"doi\":\"10.1016/j.biochi.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a great need for novel approaches to the treatment of epithelial ovarian carcinoma, which is the leading cause of mortality from gynecological malignancies. In this study, the pre-targeting technology was used to enhance the in vivo targeting of cytotoxic module composed of nanoliposomes loaded with a truncated form of Pseudomonas aeruginosa exotoxin A (PE40) to cancer cells. Pre-targeting system used in this study is composed of bacterial ribonuclease Barnase and its natural antitoxin Barstar. Barstar, genetically fused to various engineered scaffold proteins specific to tumor-associated antigens (HER2, EpCAM) serves as a primary module for precise cancer cell recognition. Barnase conjugated to a therapeutic agent serves as a cytotoxic or secondary module for malignant cell elimination. Due to strong non-covalent interaction (K<sub>D</sub>10<sup>-14</sup> M) of Barstar and Barnase, the primary and secondary modules efficiently interact with each other on the cell surface, which has been proven by confocal microscopy and flow cytometry. Using mice with SKOV-3 ovarian cancer xenografts, we have shown that regardless of the targeting module, the pre-targeting approach is much more effective than a single-step active targeting.</p>\",\"PeriodicalId\":93898,\"journal\":{\"name\":\"Biochimie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biochi.2024.09.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2024.09.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上皮性卵巢癌是妇科恶性肿瘤的主要致死原因,因此亟需新型方法来治疗上皮性卵巢癌。在本研究中,预靶向技术被用于增强由纳米脂质体组成的细胞毒性模块对癌细胞的体内靶向性,纳米脂质体装载有铜绿假单胞菌外毒素 A(PE40)的截短形式。本研究使用的预靶向系统由细菌核糖核酸酶 Barnase 及其天然抗毒素 Barstar 组成。Barstar 与各种工程支架蛋白(特异性肿瘤相关抗原(HER2、EpCAM))基因融合,是精确识别癌细胞的主要模块。与治疗剂结合的 Barnase 可作为正式消灭细胞的细胞毒性或二级模块。由于 Barstar 和 Barnase 具有很强的非共价作用(KD10-14 M),初级模块和次级模块能在细胞表面有效地相互作用,这一点已通过共聚焦显微镜和流式细胞仪得到证实。我们利用 SKOV-3 卵巢癌异种移植小鼠证明,无论采用哪种靶向模块,预靶向方法都比单步主动靶向有效得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Barnase-Barstar-based pre-targeting strategy for enhanced antitumor therapy in vivo.

There is a great need for novel approaches to the treatment of epithelial ovarian carcinoma, which is the leading cause of mortality from gynecological malignancies. In this study, the pre-targeting technology was used to enhance the in vivo targeting of cytotoxic module composed of nanoliposomes loaded with a truncated form of Pseudomonas aeruginosa exotoxin A (PE40) to cancer cells. Pre-targeting system used in this study is composed of bacterial ribonuclease Barnase and its natural antitoxin Barstar. Barstar, genetically fused to various engineered scaffold proteins specific to tumor-associated antigens (HER2, EpCAM) serves as a primary module for precise cancer cell recognition. Barnase conjugated to a therapeutic agent serves as a cytotoxic or secondary module for malignant cell elimination. Due to strong non-covalent interaction (KD10-14 M) of Barstar and Barnase, the primary and secondary modules efficiently interact with each other on the cell surface, which has been proven by confocal microscopy and flow cytometry. Using mice with SKOV-3 ovarian cancer xenografts, we have shown that regardless of the targeting module, the pre-targeting approach is much more effective than a single-step active targeting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信