{"title":"教授科学的本质可提高非 STEM 专业学生的科学素养。","authors":"David W Donley","doi":"10.59390/HRWL6927","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, science courses focus on knowledge and practices within specific disciplines. There has long been a call, however, to increase the focus on the nature and process of science as a way to improve scientific literacy and increase the transfer of knowledge. Despite this, there are few systematic studies that seek to understand the impact of this approach. Revising a STEM course in a liberal arts curriculum to primarily focus on the nature and process of science rather than on the content of a specific discipline increased student scores on the Test of Scientific Literacy Skills and improved perceptions of STEM. In the revised course, students self-reported higher levels of confidence in their ability to learn scientific information and their ability to contribute to scientific progress compared to traditional methods. These data and other literature suggest that the traditional knowledge-focused approach to science education is insufficient to facilitate scientific literacy and address equity gaps in STEM. Proposed is a model where scientific literacy and feelings of inclusion in STEM are the product of direct engagement in the process of science and careful evaluation of the nature of science. Long-term, a holistic approach that includes an authentic discussion of the enterprise of sciences is needed to prepare students to engage in future problems that are best solved by cross-disciplinary collaboration.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"22 2","pages":"A152-A157"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396173/pdf/","citationCount":"0","resultStr":"{\"title\":\"Teaching the Nature of Science Improves Scientific Literacy Among Students Not Majoring in STEM.\",\"authors\":\"David W Donley\",\"doi\":\"10.59390/HRWL6927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, science courses focus on knowledge and practices within specific disciplines. There has long been a call, however, to increase the focus on the nature and process of science as a way to improve scientific literacy and increase the transfer of knowledge. Despite this, there are few systematic studies that seek to understand the impact of this approach. Revising a STEM course in a liberal arts curriculum to primarily focus on the nature and process of science rather than on the content of a specific discipline increased student scores on the Test of Scientific Literacy Skills and improved perceptions of STEM. In the revised course, students self-reported higher levels of confidence in their ability to learn scientific information and their ability to contribute to scientific progress compared to traditional methods. These data and other literature suggest that the traditional knowledge-focused approach to science education is insufficient to facilitate scientific literacy and address equity gaps in STEM. Proposed is a model where scientific literacy and feelings of inclusion in STEM are the product of direct engagement in the process of science and careful evaluation of the nature of science. Long-term, a holistic approach that includes an authentic discussion of the enterprise of sciences is needed to prepare students to engage in future problems that are best solved by cross-disciplinary collaboration.</p>\",\"PeriodicalId\":74004,\"journal\":{\"name\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"volume\":\"22 2\",\"pages\":\"A152-A157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396173/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59390/HRWL6927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/HRWL6927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Teaching the Nature of Science Improves Scientific Literacy Among Students Not Majoring in STEM.
Traditionally, science courses focus on knowledge and practices within specific disciplines. There has long been a call, however, to increase the focus on the nature and process of science as a way to improve scientific literacy and increase the transfer of knowledge. Despite this, there are few systematic studies that seek to understand the impact of this approach. Revising a STEM course in a liberal arts curriculum to primarily focus on the nature and process of science rather than on the content of a specific discipline increased student scores on the Test of Scientific Literacy Skills and improved perceptions of STEM. In the revised course, students self-reported higher levels of confidence in their ability to learn scientific information and their ability to contribute to scientific progress compared to traditional methods. These data and other literature suggest that the traditional knowledge-focused approach to science education is insufficient to facilitate scientific literacy and address equity gaps in STEM. Proposed is a model where scientific literacy and feelings of inclusion in STEM are the product of direct engagement in the process of science and careful evaluation of the nature of science. Long-term, a holistic approach that includes an authentic discussion of the enterprise of sciences is needed to prepare students to engage in future problems that are best solved by cross-disciplinary collaboration.