高分辨率 7 特斯拉死后磁共振成像的自动深度学习分割,用于定量分析神经退行性疾病的结构病理相关性。

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2024-05-08 eCollection Date: 2024-05-01 DOI:10.1162/imag_a_00171
Pulkit Khandelwal, Michael Tran Duong, Shokufeh Sadaghiani, Sydney Lim, Amanda E Denning, Eunice Chung, Sadhana Ravikumar, Sanaz Arezoumandan, Claire Peterson, Madigan Bedard, Noah Capp, Ranjit Ittyerah, Elyse Migdal, Grace Choi, Emily Kopp, Bridget Loja, Eusha Hasan, Jiacheng Li, Alejandra Bahena, Karthik Prabhakaran, Gabor Mizsei, Marianna Gabrielyan, Theresa Schuck, Winifred Trotman, John Robinson, Daniel T Ohm, Edward B Lee, John Q Trojanowski, Corey McMillan, Murray Grossman, David J Irwin, John A Detre, M Dylan Tisdall, Sandhitsu R Das, Laura E M Wisse, David A Wolk, Paul A Yushkevich
{"title":"高分辨率 7 特斯拉死后磁共振成像的自动深度学习分割,用于定量分析神经退行性疾病的结构病理相关性。","authors":"Pulkit Khandelwal, Michael Tran Duong, Shokufeh Sadaghiani, Sydney Lim, Amanda E Denning, Eunice Chung, Sadhana Ravikumar, Sanaz Arezoumandan, Claire Peterson, Madigan Bedard, Noah Capp, Ranjit Ittyerah, Elyse Migdal, Grace Choi, Emily Kopp, Bridget Loja, Eusha Hasan, Jiacheng Li, Alejandra Bahena, Karthik Prabhakaran, Gabor Mizsei, Marianna Gabrielyan, Theresa Schuck, Winifred Trotman, John Robinson, Daniel T Ohm, Edward B Lee, John Q Trojanowski, Corey McMillan, Murray Grossman, David J Irwin, John A Detre, M Dylan Tisdall, Sandhitsu R Das, Laura E M Wisse, David A Wolk, Paul A Yushkevich","doi":"10.1162/imag_a_00171","DOIUrl":null,"url":null,"abstract":"<p><p><i><b>Postmortem</b></i> MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm<sup>3</sup> isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm<sup>3</sup> and 0.16 mm<sup>3</sup> isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the <b>project webpage</b> (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"2 ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases.\",\"authors\":\"Pulkit Khandelwal, Michael Tran Duong, Shokufeh Sadaghiani, Sydney Lim, Amanda E Denning, Eunice Chung, Sadhana Ravikumar, Sanaz Arezoumandan, Claire Peterson, Madigan Bedard, Noah Capp, Ranjit Ittyerah, Elyse Migdal, Grace Choi, Emily Kopp, Bridget Loja, Eusha Hasan, Jiacheng Li, Alejandra Bahena, Karthik Prabhakaran, Gabor Mizsei, Marianna Gabrielyan, Theresa Schuck, Winifred Trotman, John Robinson, Daniel T Ohm, Edward B Lee, John Q Trojanowski, Corey McMillan, Murray Grossman, David J Irwin, John A Detre, M Dylan Tisdall, Sandhitsu R Das, Laura E M Wisse, David A Wolk, Paul A Yushkevich\",\"doi\":\"10.1162/imag_a_00171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i><b>Postmortem</b></i> MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm<sup>3</sup> isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm<sup>3</sup> and 0.16 mm<sup>3</sup> isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the <b>project webpage</b> (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).</p>\",\"PeriodicalId\":73341,\"journal\":{\"name\":\"Imaging neuroscience (Cambridge, Mass.)\",\"volume\":\"2 \",\"pages\":\"1-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging neuroscience (Cambridge, Mass.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/imag_a_00171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

死后核磁共振成像可对大脑解剖进行高分辨率检查,并将病理测量与形态测量联系起来。然而,用于死后核磁共振成像中大脑映射的自动分割方法并不完善,这主要是由于标记数据集的可用性有限,以及扫描仪硬件和采集协议的异质性。在这项工作中,我们在 7T 全身 MRI 扫描仪上使用 T2w 序列,以 0.3 mm3 各向同性成像的 135 个死后人类脑组织标本的高分辨率数据集。我们开发了一种深度学习管道,通过对九种深度神经架构的性能进行基准测试,然后进行事后拓扑校正,来分割皮层地幔。我们在 6 个标本中通过与人工分割的重叠度量评估了该管道的可靠性,并在 36 个标本中评估了从自动分割中提取的皮层厚度测量值与专家生成的参考测量值之间的类内相关性。我们还分割了四个皮层下结构(尾状核、丘脑、苍白球和丘脑)、白质高密度和正常显示的白质,对准确性进行了有限的评估。我们在不同标本的全脑半球以及在 7T 下以 0.28 mm3 和 0.16 mm3 各向同性 T2*w 快速低角度拍摄(FLASH)序列获取的未见图像上展示了概括能力。我们报告了关键区域的局部皮层厚度和体积测量值与半定量神经病理学评分之间的关联,这些数据来自于 82 名阿尔茨海默病(AD)连续诊断患者的子集。我们的代码、Jupyter 笔记本和容器化的可执行文件可在项目网页(https://pulkit-khandelwal.github.io/exvivo-brain-upenn/)上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated deep learning segmentation of high-resolution 7 Tesla postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases.

Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm3 isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm3 and 0.16 mm3 isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the project webpage (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信