{"title":"利用选择基因驱动克服耐药性肿瘤。","authors":"Hui Wang, Mingqi Xie","doi":"10.1016/j.xgen.2024.100653","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance is a major hurdle prohibiting effective treatment of many diseases, including cancer. Using model-guided designs, Leighow et al.<sup>1</sup> engineered a dual-switch selection gene drive system custom designed to combat drug-resistant tumors. By demonstrating remarkable killing efficacies in preclinical models using human non-small lung cancer cells in vitro and in mice, this work describes an attractive mindset to develop next-generation anticancer therapies.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"4 9","pages":"100653"},"PeriodicalIF":11.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overcoming drug-resistant tumors with selection gene drives.\",\"authors\":\"Hui Wang, Mingqi Xie\",\"doi\":\"10.1016/j.xgen.2024.100653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug resistance is a major hurdle prohibiting effective treatment of many diseases, including cancer. Using model-guided designs, Leighow et al.<sup>1</sup> engineered a dual-switch selection gene drive system custom designed to combat drug-resistant tumors. By demonstrating remarkable killing efficacies in preclinical models using human non-small lung cancer cells in vitro and in mice, this work describes an attractive mindset to develop next-generation anticancer therapies.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\"4 9\",\"pages\":\"100653\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Overcoming drug-resistant tumors with selection gene drives.
Drug resistance is a major hurdle prohibiting effective treatment of many diseases, including cancer. Using model-guided designs, Leighow et al.1 engineered a dual-switch selection gene drive system custom designed to combat drug-resistant tumors. By demonstrating remarkable killing efficacies in preclinical models using human non-small lung cancer cells in vitro and in mice, this work describes an attractive mindset to develop next-generation anticancer therapies.