{"title":"通过扰动转录组学的知识图嵌入识别化合物与蛋白质之间的相互作用。","authors":"Shengkun Ni, Xiangtai Kong, Yingying Zhang, Zhengyang Chen, Zhaokun Wang, Zunyun Fu, Ruifeng Huo, Xiaochu Tong, Ning Qu, Xiaolong Wu, Kun Wang, Wei Zhang, Runze Zhang, Zimei Zhang, Jiangshan Shi, Yitian Wang, Ruirui Yang, Xutong Li, Sulin Zhang, Mingyue Zheng","doi":"10.1016/j.xgen.2024.100655","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical \"cold-start\" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100655"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying compound-protein interactions with knowledge graph embedding of perturbation transcriptomics.\",\"authors\":\"Shengkun Ni, Xiangtai Kong, Yingying Zhang, Zhengyang Chen, Zhaokun Wang, Zunyun Fu, Ruifeng Huo, Xiaochu Tong, Ning Qu, Xiaolong Wu, Kun Wang, Wei Zhang, Runze Zhang, Zimei Zhang, Jiangshan Shi, Yitian Wang, Ruirui Yang, Xutong Li, Sulin Zhang, Mingyue Zheng\",\"doi\":\"10.1016/j.xgen.2024.100655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical \\\"cold-start\\\" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100655\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Identifying compound-protein interactions with knowledge graph embedding of perturbation transcriptomics.
The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical "cold-start" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.