Yao Chen, Li Mei, Yuran Qian, Xinlianyi Zhou, Zhihe Zhao, Wei Zheng, Yu Li
{"title":"对牙龈缝隙液中蛋白质分布的综合生物信息学分析揭示了正畸牙齿移动过程中的连续生物过程。","authors":"Yao Chen, Li Mei, Yuran Qian, Xinlianyi Zhou, Zhihe Zhao, Wei Zheng, Yu Li","doi":"10.1186/s40510-024-00536-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The biological mechanisms driving orthodontic tooth movement (OTM) remain incompletely understood. Gingival crevicular fluid (GCF) is an important indicator of the periodontal bioprocess, providing valuable cues for probing the molecular mechanisms of OTM.</p><p><strong>Methods: </strong>A rigorous review of the clinical studies over the past decade was conducted after registering the protocol with PROSPERO and adhering to inclusion criteria comprising human subjects, specified force magnitudes and force application modes. The thorough screening investigated differentially expressed proteins (DEPs) in GCF associated with OTM. Protein-protein interaction (PPI) analysis was carried out using the STRING database, followed by further refinement through Cytoscape to isolate top hub proteins.</p><p><strong>Results: </strong>A comprehensive summarization of the OTM-related GCF studies was conducted, followed by an in-depth exploration of biomarkers within the GCF. We identified 13 DEPs, including ALP, IL-1β, IL-6, Leptin, MMP-1, MMP-3, MMP-8, MMP-9, PGE<sub>2</sub>, TGF-β1, TNF-α, OPG, RANKL. Bioinformatic analysis spotlighted the top 10 hub proteins and their interactions involved in OTM. Based on these findings, we have proposed a hypothetic diagram for the time-course bioprocess in OTM, which involves three phases containing sequential cellular and molecular components and their interplay network.</p><p><strong>Conclusions: </strong>This work has further improved our understanding to the bioprocess of OTM, suggesting biomarkers as potential modulating targets to enhance OTM, mitigate adverse effects and support real-time monitoring and personalized orthodontic cycles.</p>","PeriodicalId":56071,"journal":{"name":"Progress in Orthodontics","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated bioinformatic analysis of protein landscape in gingival crevicular fluid unveils sequential bioprocess in orthodontic tooth movement.\",\"authors\":\"Yao Chen, Li Mei, Yuran Qian, Xinlianyi Zhou, Zhihe Zhao, Wei Zheng, Yu Li\",\"doi\":\"10.1186/s40510-024-00536-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The biological mechanisms driving orthodontic tooth movement (OTM) remain incompletely understood. Gingival crevicular fluid (GCF) is an important indicator of the periodontal bioprocess, providing valuable cues for probing the molecular mechanisms of OTM.</p><p><strong>Methods: </strong>A rigorous review of the clinical studies over the past decade was conducted after registering the protocol with PROSPERO and adhering to inclusion criteria comprising human subjects, specified force magnitudes and force application modes. The thorough screening investigated differentially expressed proteins (DEPs) in GCF associated with OTM. Protein-protein interaction (PPI) analysis was carried out using the STRING database, followed by further refinement through Cytoscape to isolate top hub proteins.</p><p><strong>Results: </strong>A comprehensive summarization of the OTM-related GCF studies was conducted, followed by an in-depth exploration of biomarkers within the GCF. We identified 13 DEPs, including ALP, IL-1β, IL-6, Leptin, MMP-1, MMP-3, MMP-8, MMP-9, PGE<sub>2</sub>, TGF-β1, TNF-α, OPG, RANKL. Bioinformatic analysis spotlighted the top 10 hub proteins and their interactions involved in OTM. Based on these findings, we have proposed a hypothetic diagram for the time-course bioprocess in OTM, which involves three phases containing sequential cellular and molecular components and their interplay network.</p><p><strong>Conclusions: </strong>This work has further improved our understanding to the bioprocess of OTM, suggesting biomarkers as potential modulating targets to enhance OTM, mitigate adverse effects and support real-time monitoring and personalized orthodontic cycles.</p>\",\"PeriodicalId\":56071,\"journal\":{\"name\":\"Progress in Orthodontics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Orthodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40510-024-00536-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40510-024-00536-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Dentistry","Score":null,"Total":0}
Integrated bioinformatic analysis of protein landscape in gingival crevicular fluid unveils sequential bioprocess in orthodontic tooth movement.
Background: The biological mechanisms driving orthodontic tooth movement (OTM) remain incompletely understood. Gingival crevicular fluid (GCF) is an important indicator of the periodontal bioprocess, providing valuable cues for probing the molecular mechanisms of OTM.
Methods: A rigorous review of the clinical studies over the past decade was conducted after registering the protocol with PROSPERO and adhering to inclusion criteria comprising human subjects, specified force magnitudes and force application modes. The thorough screening investigated differentially expressed proteins (DEPs) in GCF associated with OTM. Protein-protein interaction (PPI) analysis was carried out using the STRING database, followed by further refinement through Cytoscape to isolate top hub proteins.
Results: A comprehensive summarization of the OTM-related GCF studies was conducted, followed by an in-depth exploration of biomarkers within the GCF. We identified 13 DEPs, including ALP, IL-1β, IL-6, Leptin, MMP-1, MMP-3, MMP-8, MMP-9, PGE2, TGF-β1, TNF-α, OPG, RANKL. Bioinformatic analysis spotlighted the top 10 hub proteins and their interactions involved in OTM. Based on these findings, we have proposed a hypothetic diagram for the time-course bioprocess in OTM, which involves three phases containing sequential cellular and molecular components and their interplay network.
Conclusions: This work has further improved our understanding to the bioprocess of OTM, suggesting biomarkers as potential modulating targets to enhance OTM, mitigate adverse effects and support real-time monitoring and personalized orthodontic cycles.
期刊介绍:
Progress in Orthodontics is a fully open access, international journal owned by the Italian Society of Orthodontics and published under the brand SpringerOpen. The Society is currently covering all publication costs so there are no article processing charges for authors.
It is a premier journal of international scope that fosters orthodontic research, including both basic research and development of innovative clinical techniques, with an emphasis on the following areas:
• Mechanisms to improve orthodontics
• Clinical studies and control animal studies
• Orthodontics and genetics, genomics
• Temporomandibular joint (TMJ) control clinical trials
• Efficacy of orthodontic appliances and animal models
• Systematic reviews and meta analyses
• Mechanisms to speed orthodontic treatment
Progress in Orthodontics will consider for publication only meritorious and original contributions. These may be:
• Original articles reporting the findings of clinical trials, clinically relevant basic scientific investigations, or novel therapeutic or diagnostic systems
• Review articles on current topics
• Articles on novel techniques and clinical tools
• Articles of contemporary interest