Alejandro Cantarero , Blanca Fernández-Eslava , Daniel Alonso , Pablo Camarero , Rafael Mateo , Carlos Alonso-Alvarez
{"title":"类胡萝卜素转化的替代途径会影响色彩生产效率吗?对野生鹖鸟(Loxia curvirostra)的相关研究。","authors":"Alejandro Cantarero , Blanca Fernández-Eslava , Daniel Alonso , Pablo Camarero , Rafael Mateo , Carlos Alonso-Alvarez","doi":"10.1016/j.cbpb.2024.111032","DOIUrl":null,"url":null,"abstract":"<div><div>In many vertebrates, dietary yellow carotenoids are enzymatically transformed into 4C-ketocarotenoid pigments, leading to conspicuous red colourations. These colourations may evolve as signals of individual quality under sexual selection. To evolve as signals, they must transmit reliable information benefiting both the receiver and the signaler. Some argue that the reliability of 4C-ketocarotenoid-based colourations is ensured by the tight link between individual quality and mitochondrial metabolism, which is supposedly involved in transforming yellow carotenoids. We studied how a range of carotenoids covary in the feathers and blood plasma of a large number (<em>n</em> > 140) of wild male common crossbills (<em>Loxia curvirostra</em>). Plumage redness was mainly due to 3-hydroxy-echinenone (3HOE). Two other, less abundant, red 4C-ketocarotenoids (astaxanthin and canthaxanthin) could have contributed to feather colour as they are redder pigments. This was demonstrated for astaxanthin but not canthaxanthin, whose feather levels were clearly uncorrelated to colouration. Moreover, moulting crossbills carried more 3HOE and astaxanthin in blood than non-moulting ones, whereas canthaxanthin did not differ. Canthaxanthin and 3HOE can be formed from echinenone, a probable product of dietary β-carotene ketolation. Echinenone could thus be ketolated or hydroxylated to produce canthaxanthin or 3HOE, respectively. In moulting birds, 3HOE blood levels positively correlated to astaxanthin, its product, but negatively to canthaxanthin levels. Redder crossbills also had lower plasma canthaxanthin values. A decrease in hydroxylation relative to ketolation could explain canthaxanthin production. We hypothesize that red colouration could indicate birds' ability to avoid inefficient deviations within the complex enzymatic pathways.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"275 ","pages":"Article 111032"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S109649592400099X/pdfft?md5=83ec2cf3cc13c3ba81898d6fbe26a64b&pid=1-s2.0-S109649592400099X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Could alternative pathways for carotenoid transformation affect colour production efficiency? A correlative study in wild common crossbills (Loxia curvirostra)\",\"authors\":\"Alejandro Cantarero , Blanca Fernández-Eslava , Daniel Alonso , Pablo Camarero , Rafael Mateo , Carlos Alonso-Alvarez\",\"doi\":\"10.1016/j.cbpb.2024.111032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In many vertebrates, dietary yellow carotenoids are enzymatically transformed into 4C-ketocarotenoid pigments, leading to conspicuous red colourations. These colourations may evolve as signals of individual quality under sexual selection. To evolve as signals, they must transmit reliable information benefiting both the receiver and the signaler. Some argue that the reliability of 4C-ketocarotenoid-based colourations is ensured by the tight link between individual quality and mitochondrial metabolism, which is supposedly involved in transforming yellow carotenoids. We studied how a range of carotenoids covary in the feathers and blood plasma of a large number (<em>n</em> > 140) of wild male common crossbills (<em>Loxia curvirostra</em>). Plumage redness was mainly due to 3-hydroxy-echinenone (3HOE). Two other, less abundant, red 4C-ketocarotenoids (astaxanthin and canthaxanthin) could have contributed to feather colour as they are redder pigments. This was demonstrated for astaxanthin but not canthaxanthin, whose feather levels were clearly uncorrelated to colouration. Moreover, moulting crossbills carried more 3HOE and astaxanthin in blood than non-moulting ones, whereas canthaxanthin did not differ. Canthaxanthin and 3HOE can be formed from echinenone, a probable product of dietary β-carotene ketolation. Echinenone could thus be ketolated or hydroxylated to produce canthaxanthin or 3HOE, respectively. In moulting birds, 3HOE blood levels positively correlated to astaxanthin, its product, but negatively to canthaxanthin levels. Redder crossbills also had lower plasma canthaxanthin values. A decrease in hydroxylation relative to ketolation could explain canthaxanthin production. We hypothesize that red colouration could indicate birds' ability to avoid inefficient deviations within the complex enzymatic pathways.</div></div>\",\"PeriodicalId\":55236,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"volume\":\"275 \",\"pages\":\"Article 111032\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S109649592400099X/pdfft?md5=83ec2cf3cc13c3ba81898d6fbe26a64b&pid=1-s2.0-S109649592400099X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109649592400099X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109649592400099X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Could alternative pathways for carotenoid transformation affect colour production efficiency? A correlative study in wild common crossbills (Loxia curvirostra)
In many vertebrates, dietary yellow carotenoids are enzymatically transformed into 4C-ketocarotenoid pigments, leading to conspicuous red colourations. These colourations may evolve as signals of individual quality under sexual selection. To evolve as signals, they must transmit reliable information benefiting both the receiver and the signaler. Some argue that the reliability of 4C-ketocarotenoid-based colourations is ensured by the tight link between individual quality and mitochondrial metabolism, which is supposedly involved in transforming yellow carotenoids. We studied how a range of carotenoids covary in the feathers and blood plasma of a large number (n > 140) of wild male common crossbills (Loxia curvirostra). Plumage redness was mainly due to 3-hydroxy-echinenone (3HOE). Two other, less abundant, red 4C-ketocarotenoids (astaxanthin and canthaxanthin) could have contributed to feather colour as they are redder pigments. This was demonstrated for astaxanthin but not canthaxanthin, whose feather levels were clearly uncorrelated to colouration. Moreover, moulting crossbills carried more 3HOE and astaxanthin in blood than non-moulting ones, whereas canthaxanthin did not differ. Canthaxanthin and 3HOE can be formed from echinenone, a probable product of dietary β-carotene ketolation. Echinenone could thus be ketolated or hydroxylated to produce canthaxanthin or 3HOE, respectively. In moulting birds, 3HOE blood levels positively correlated to astaxanthin, its product, but negatively to canthaxanthin levels. Redder crossbills also had lower plasma canthaxanthin values. A decrease in hydroxylation relative to ketolation could explain canthaxanthin production. We hypothesize that red colouration could indicate birds' ability to avoid inefficient deviations within the complex enzymatic pathways.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.