Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall
{"title":"在器官尺度生长和重塑的约束混合物模型中对历史变量进行自适应整合。","authors":"Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall","doi":"10.1002/cnm.3869","DOIUrl":null,"url":null,"abstract":"<p>In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations. We propose two strategies to adaptively integrate history variables in constrained mixture models to enable large organ-scale simulations of G&R. Both strategies exploit that the influence of deposited tissue on the current mixture decreases over time through degradation. One strategy is independent of external loading, allowing the estimation of the computational resources ahead of the simulation. The other adapts the history snapshots based on the local mechanobiological environment so that the additional integration errors can be controlled and kept negligibly small, even in G&R scenarios with severe perturbations. We analyze the adaptively integrated constrained mixture model on a tissue patch for a parameter study and show the performance under different G&R scenarios. To confirm that adaptive strategies enable large organ-scale examples, we show simulations of different hypertension conditions with a real-world example of a biventricular heart discretized with a finite element mesh. In our example, adaptive integrations sped up simulations by a factor of three and reduced memory requirements to one-sixth. The reduction of the computational costs gets even more pronounced for simulations over longer periods. Adaptive integration of the history variables allows studying more finely resolved models and longer G&R periods while computational costs are drastically reduced and largely constant in time.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3869","citationCount":"0","resultStr":"{\"title\":\"Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling\",\"authors\":\"Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall\",\"doi\":\"10.1002/cnm.3869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations. We propose two strategies to adaptively integrate history variables in constrained mixture models to enable large organ-scale simulations of G&R. Both strategies exploit that the influence of deposited tissue on the current mixture decreases over time through degradation. One strategy is independent of external loading, allowing the estimation of the computational resources ahead of the simulation. The other adapts the history snapshots based on the local mechanobiological environment so that the additional integration errors can be controlled and kept negligibly small, even in G&R scenarios with severe perturbations. We analyze the adaptively integrated constrained mixture model on a tissue patch for a parameter study and show the performance under different G&R scenarios. To confirm that adaptive strategies enable large organ-scale examples, we show simulations of different hypertension conditions with a real-world example of a biventricular heart discretized with a finite element mesh. In our example, adaptive integrations sped up simulations by a factor of three and reduced memory requirements to one-sixth. The reduction of the computational costs gets even more pronounced for simulations over longer periods. Adaptive integration of the history variables allows studying more finely resolved models and longer G&R periods while computational costs are drastically reduced and largely constant in time.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3869\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3869","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling
In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations. We propose two strategies to adaptively integrate history variables in constrained mixture models to enable large organ-scale simulations of G&R. Both strategies exploit that the influence of deposited tissue on the current mixture decreases over time through degradation. One strategy is independent of external loading, allowing the estimation of the computational resources ahead of the simulation. The other adapts the history snapshots based on the local mechanobiological environment so that the additional integration errors can be controlled and kept negligibly small, even in G&R scenarios with severe perturbations. We analyze the adaptively integrated constrained mixture model on a tissue patch for a parameter study and show the performance under different G&R scenarios. To confirm that adaptive strategies enable large organ-scale examples, we show simulations of different hypertension conditions with a real-world example of a biventricular heart discretized with a finite element mesh. In our example, adaptive integrations sped up simulations by a factor of three and reduced memory requirements to one-sixth. The reduction of the computational costs gets even more pronounced for simulations over longer periods. Adaptive integration of the history variables allows studying more finely resolved models and longer G&R periods while computational costs are drastically reduced and largely constant in time.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.