Ji Lin, Heng Lin, Weiwei Li, Jianfen Huang, Lanlan Chen, Ruotao Wang
{"title":"miR-151a-3p 调节 TNIK/PI3K/Akt 轴并影响多囊卵巢综合征的进展。","authors":"Ji Lin, Heng Lin, Weiwei Li, Jianfen Huang, Lanlan Chen, Ruotao Wang","doi":"10.1080/14767058.2024.2372695","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Polycystic ovarian syndrome (PCOS) is a common reproductive endocrine disease in women of childbearing age, and the incidence of PCOS has increased in recent years. However, the pathogenesis of this disease has not been fully elucidated.</p><p><strong>Methods: </strong>The expression of miR-151a-3p in ovarian granulosa cells (KGN) was determined using real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), colony formation and flow cytometric assays were used to investigate the effect of miR-151a-3p on KGN cells. Luciferase reporter analysis and western blotting were used to verify the targeting of miR-151a-3p by Traf and Nck interacting kinase (TNIK). Western blotting (WB) was used to evaluate the protein levels.</p><p><strong>Results: </strong>We found that miR-151a-3p was downregulated and TNIK was upregulated in the serum of PCOS patients. Low expression of miR-151a-3p promoted cell proliferation, colony formation and the G0/G1 transition and reduced apoptosis. Our results showed that low expression of miR-151a-3p promoted the expression of TNIK, which activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Overexpression of TNIK rescued the effect of miR-151a-3p in ovarian granulosa cells. Finally, our results showed that there was a significant correlation between the expression of miR-151a-3p and the expression of the target TNIK in PCOS patients and that miR-151a-3p promoted disease occurrence by activating the PI3K/AKT signaling pathway.</p><p><strong>Conclusions: </strong>Low expression of miR-151a-3p promoted KNG cell proliferation by activating the TNIK-mediated PI3K/AKT signaling pathway. The miR-151a-3p/TNIK/PI3K/AKT signaling axis may be a potential therapeutic target for preventing the progression of PCOS.</p>","PeriodicalId":50146,"journal":{"name":"Journal of Maternal-Fetal & Neonatal Medicine","volume":"37 1","pages":"2372695"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-151a-3p regulates the TNIK/PI3K/Akt axis and influences the progression of polycystic ovary syndrome.\",\"authors\":\"Ji Lin, Heng Lin, Weiwei Li, Jianfen Huang, Lanlan Chen, Ruotao Wang\",\"doi\":\"10.1080/14767058.2024.2372695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Polycystic ovarian syndrome (PCOS) is a common reproductive endocrine disease in women of childbearing age, and the incidence of PCOS has increased in recent years. However, the pathogenesis of this disease has not been fully elucidated.</p><p><strong>Methods: </strong>The expression of miR-151a-3p in ovarian granulosa cells (KGN) was determined using real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), colony formation and flow cytometric assays were used to investigate the effect of miR-151a-3p on KGN cells. Luciferase reporter analysis and western blotting were used to verify the targeting of miR-151a-3p by Traf and Nck interacting kinase (TNIK). Western blotting (WB) was used to evaluate the protein levels.</p><p><strong>Results: </strong>We found that miR-151a-3p was downregulated and TNIK was upregulated in the serum of PCOS patients. Low expression of miR-151a-3p promoted cell proliferation, colony formation and the G0/G1 transition and reduced apoptosis. Our results showed that low expression of miR-151a-3p promoted the expression of TNIK, which activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Overexpression of TNIK rescued the effect of miR-151a-3p in ovarian granulosa cells. Finally, our results showed that there was a significant correlation between the expression of miR-151a-3p and the expression of the target TNIK in PCOS patients and that miR-151a-3p promoted disease occurrence by activating the PI3K/AKT signaling pathway.</p><p><strong>Conclusions: </strong>Low expression of miR-151a-3p promoted KNG cell proliferation by activating the TNIK-mediated PI3K/AKT signaling pathway. The miR-151a-3p/TNIK/PI3K/AKT signaling axis may be a potential therapeutic target for preventing the progression of PCOS.</p>\",\"PeriodicalId\":50146,\"journal\":{\"name\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"volume\":\"37 1\",\"pages\":\"2372695\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14767058.2024.2372695\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maternal-Fetal & Neonatal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14767058.2024.2372695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
miR-151a-3p regulates the TNIK/PI3K/Akt axis and influences the progression of polycystic ovary syndrome.
Objectives: Polycystic ovarian syndrome (PCOS) is a common reproductive endocrine disease in women of childbearing age, and the incidence of PCOS has increased in recent years. However, the pathogenesis of this disease has not been fully elucidated.
Methods: The expression of miR-151a-3p in ovarian granulosa cells (KGN) was determined using real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), colony formation and flow cytometric assays were used to investigate the effect of miR-151a-3p on KGN cells. Luciferase reporter analysis and western blotting were used to verify the targeting of miR-151a-3p by Traf and Nck interacting kinase (TNIK). Western blotting (WB) was used to evaluate the protein levels.
Results: We found that miR-151a-3p was downregulated and TNIK was upregulated in the serum of PCOS patients. Low expression of miR-151a-3p promoted cell proliferation, colony formation and the G0/G1 transition and reduced apoptosis. Our results showed that low expression of miR-151a-3p promoted the expression of TNIK, which activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Overexpression of TNIK rescued the effect of miR-151a-3p in ovarian granulosa cells. Finally, our results showed that there was a significant correlation between the expression of miR-151a-3p and the expression of the target TNIK in PCOS patients and that miR-151a-3p promoted disease occurrence by activating the PI3K/AKT signaling pathway.
Conclusions: Low expression of miR-151a-3p promoted KNG cell proliferation by activating the TNIK-mediated PI3K/AKT signaling pathway. The miR-151a-3p/TNIK/PI3K/AKT signaling axis may be a potential therapeutic target for preventing the progression of PCOS.
期刊介绍:
The official journal of The European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies and The International Society of Perinatal Obstetricians. The journal publishes a wide range of peer-reviewed research on the obstetric, medical, genetic, mental health and surgical complications of pregnancy and their effects on the mother, fetus and neonate. Research on audit, evaluation and clinical care in maternal-fetal and perinatal medicine is also featured.