基于混合音频特征和 ResLSTM 的婴儿哭声分类。

IF 2.5 4区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Yongbo Qiu, Xin Yang, Siqi Yang, Yuyou Gong, Qinrui Lv, Bo Yang
{"title":"基于混合音频特征和 ResLSTM 的婴儿哭声分类。","authors":"Yongbo Qiu, Xin Yang, Siqi Yang, Yuyou Gong, Qinrui Lv, Bo Yang","doi":"10.1016/j.jvoice.2024.08.022","DOIUrl":null,"url":null,"abstract":"<p><p>Crying is one of the primary means by which infants communicate with their environment in the early stages of life. These cries can be triggered by physiological factors such as hunger or sleepiness, or by pathological factors such as illness or discomfort. Therefore, analyzing infant cries can assist inexperienced parents in better caring for their babies. Most studies have predominantly utilized a single-speech feature, such as Mel Frequency Cepstral Coefficients (MFCC), for classifying infant cries, while other speech features, such as Mel Spectrogram and Tonnetz, are often overlooked. In this study, we manually designed a hybrid feature set, MMT (including MFCC, Mel Spectrogram, and Tonnetz), and explored its application in infant cry classification. Additionally, we proposed a convolutional neural network based on residual connections and long short-term memory (LSTM) networks, termed ResLSTM. We compared the performance of different deep learning models using the hybrid feature set MMT and the single MFCC feature. This study utilized the Baby Crying, Dunstan Baby Language, and Donate a Cry datasets. The results indicate that the hybrid feature set MMT outperforms the single MFCC feature. The MMT combined with the ResLSTM method achieved the best performance, obtaining accuracy rates of 94.15%, 92.92%, and 95.98% on the three datasets, respectively.</p>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Infant Cry Based on Hybrid Audio Features and ResLSTM.\",\"authors\":\"Yongbo Qiu, Xin Yang, Siqi Yang, Yuyou Gong, Qinrui Lv, Bo Yang\",\"doi\":\"10.1016/j.jvoice.2024.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crying is one of the primary means by which infants communicate with their environment in the early stages of life. These cries can be triggered by physiological factors such as hunger or sleepiness, or by pathological factors such as illness or discomfort. Therefore, analyzing infant cries can assist inexperienced parents in better caring for their babies. Most studies have predominantly utilized a single-speech feature, such as Mel Frequency Cepstral Coefficients (MFCC), for classifying infant cries, while other speech features, such as Mel Spectrogram and Tonnetz, are often overlooked. In this study, we manually designed a hybrid feature set, MMT (including MFCC, Mel Spectrogram, and Tonnetz), and explored its application in infant cry classification. Additionally, we proposed a convolutional neural network based on residual connections and long short-term memory (LSTM) networks, termed ResLSTM. We compared the performance of different deep learning models using the hybrid feature set MMT and the single MFCC feature. This study utilized the Baby Crying, Dunstan Baby Language, and Donate a Cry datasets. The results indicate that the hybrid feature set MMT outperforms the single MFCC feature. The MMT combined with the ResLSTM method achieved the best performance, obtaining accuracy rates of 94.15%, 92.92%, and 95.98% on the three datasets, respectively.</p>\",\"PeriodicalId\":49954,\"journal\":{\"name\":\"Journal of Voice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Voice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jvoice.2024.08.022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2024.08.022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

啼哭是婴儿在生命早期阶段与周围环境交流的主要方式之一。引发这些哭声的原因可能是饥饿或困倦等生理因素,也可能是疾病或不适等病理因素。因此,分析婴儿的哭声可以帮助缺乏经验的父母更好地照顾婴儿。大多数研究主要利用单一语音特征(如 Mel Frequency Cepstral Coefficients,MFCC)对婴儿哭声进行分类,而其他语音特征(如 Mel Spectrogram 和 Tonnetz)往往被忽视。在本研究中,我们手动设计了一个混合特征集 MMT(包括 MFCC、Mel Spectrogram 和 Tonnetz),并探索了其在婴儿哭声分类中的应用。此外,我们还提出了一种基于残差连接和长短期记忆(LSTM)网络的卷积神经网络,称为 ResLSTM。我们比较了使用混合特征集 MMT 和单一 MFCC 特征的不同深度学习模型的性能。这项研究使用了婴儿哭声、邓斯坦婴儿语言和 Donate a Cry 数据集。结果表明,混合特征集 MMT 优于单一 MFCC 特征。MMT 与 ResLSTM 方法的结合取得了最佳性能,在三个数据集上的准确率分别为 94.15%、92.92% 和 95.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Infant Cry Based on Hybrid Audio Features and ResLSTM.

Crying is one of the primary means by which infants communicate with their environment in the early stages of life. These cries can be triggered by physiological factors such as hunger or sleepiness, or by pathological factors such as illness or discomfort. Therefore, analyzing infant cries can assist inexperienced parents in better caring for their babies. Most studies have predominantly utilized a single-speech feature, such as Mel Frequency Cepstral Coefficients (MFCC), for classifying infant cries, while other speech features, such as Mel Spectrogram and Tonnetz, are often overlooked. In this study, we manually designed a hybrid feature set, MMT (including MFCC, Mel Spectrogram, and Tonnetz), and explored its application in infant cry classification. Additionally, we proposed a convolutional neural network based on residual connections and long short-term memory (LSTM) networks, termed ResLSTM. We compared the performance of different deep learning models using the hybrid feature set MMT and the single MFCC feature. This study utilized the Baby Crying, Dunstan Baby Language, and Donate a Cry datasets. The results indicate that the hybrid feature set MMT outperforms the single MFCC feature. The MMT combined with the ResLSTM method achieved the best performance, obtaining accuracy rates of 94.15%, 92.92%, and 95.98% on the three datasets, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Voice
Journal of Voice 医学-耳鼻喉科学
CiteScore
4.00
自引率
13.60%
发文量
395
审稿时长
59 days
期刊介绍: The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信