{"title":"牙周炎诊断:人工智能当前和未来趋势综述。","authors":"Jarupat Jundaeng, Rapeeporn Chamchong, Choosak Nithikathkul","doi":"10.3233/THC-241169","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) acts as the state-of-the-art in periodontitis diagnosis in dentistry. Current diagnostic challenges include errors due to a lack of experienced dentists, limited time for radiograph analysis, and mandatory reporting, impacting care quality, cost, and efficiency.</p><p><strong>Objective: </strong>This review aims to evaluate the current and future trends in AI for diagnosing periodontitis.</p><p><strong>Methods: </strong>A thorough literature review was conducted following PRISMA guidelines. We searched databases including PubMed, Scopus, Wiley Online Library, and ScienceDirect for studies published between January 2018 and December 2023. Keywords used in the search included \"artificial intelligence,\" \"panoramic radiograph,\" \"periodontitis,\" \"periodontal disease,\" and \"diagnosis.\"</p><p><strong>Results: </strong>The review included 12 studies from an initial 211 records. These studies used advanced models, particularly convolutional neural networks (CNNs), demonstrating accuracy rates for periodontal bone loss detection ranging from 0.76 to 0.98. Methodologies included deep learning hybrid methods, automated identification systems, and machine learning classifiers, enhancing diagnostic precision and efficiency.</p><p><strong>Conclusions: </strong>Integrating AI innovations in periodontitis diagnosis enhances diagnostic accuracy and efficiency, providing a robust alternative to conventional methods. These technologies offer quicker, less labor-intensive, and more precise alternatives to classical approaches. Future research should focus on improving AI model reliability and generalizability to ensure widespread clinical adoption.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodontitis diagnosis: A review of current and future trends in artificial intelligence.\",\"authors\":\"Jarupat Jundaeng, Rapeeporn Chamchong, Choosak Nithikathkul\",\"doi\":\"10.3233/THC-241169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Artificial intelligence (AI) acts as the state-of-the-art in periodontitis diagnosis in dentistry. Current diagnostic challenges include errors due to a lack of experienced dentists, limited time for radiograph analysis, and mandatory reporting, impacting care quality, cost, and efficiency.</p><p><strong>Objective: </strong>This review aims to evaluate the current and future trends in AI for diagnosing periodontitis.</p><p><strong>Methods: </strong>A thorough literature review was conducted following PRISMA guidelines. We searched databases including PubMed, Scopus, Wiley Online Library, and ScienceDirect for studies published between January 2018 and December 2023. Keywords used in the search included \\\"artificial intelligence,\\\" \\\"panoramic radiograph,\\\" \\\"periodontitis,\\\" \\\"periodontal disease,\\\" and \\\"diagnosis.\\\"</p><p><strong>Results: </strong>The review included 12 studies from an initial 211 records. These studies used advanced models, particularly convolutional neural networks (CNNs), demonstrating accuracy rates for periodontal bone loss detection ranging from 0.76 to 0.98. Methodologies included deep learning hybrid methods, automated identification systems, and machine learning classifiers, enhancing diagnostic precision and efficiency.</p><p><strong>Conclusions: </strong>Integrating AI innovations in periodontitis diagnosis enhances diagnostic accuracy and efficiency, providing a robust alternative to conventional methods. These technologies offer quicker, less labor-intensive, and more precise alternatives to classical approaches. Future research should focus on improving AI model reliability and generalizability to ensure widespread clinical adoption.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-241169\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-241169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Periodontitis diagnosis: A review of current and future trends in artificial intelligence.
Background: Artificial intelligence (AI) acts as the state-of-the-art in periodontitis diagnosis in dentistry. Current diagnostic challenges include errors due to a lack of experienced dentists, limited time for radiograph analysis, and mandatory reporting, impacting care quality, cost, and efficiency.
Objective: This review aims to evaluate the current and future trends in AI for diagnosing periodontitis.
Methods: A thorough literature review was conducted following PRISMA guidelines. We searched databases including PubMed, Scopus, Wiley Online Library, and ScienceDirect for studies published between January 2018 and December 2023. Keywords used in the search included "artificial intelligence," "panoramic radiograph," "periodontitis," "periodontal disease," and "diagnosis."
Results: The review included 12 studies from an initial 211 records. These studies used advanced models, particularly convolutional neural networks (CNNs), demonstrating accuracy rates for periodontal bone loss detection ranging from 0.76 to 0.98. Methodologies included deep learning hybrid methods, automated identification systems, and machine learning classifiers, enhancing diagnostic precision and efficiency.
Conclusions: Integrating AI innovations in periodontitis diagnosis enhances diagnostic accuracy and efficiency, providing a robust alternative to conventional methods. These technologies offer quicker, less labor-intensive, and more precise alternatives to classical approaches. Future research should focus on improving AI model reliability and generalizability to ensure widespread clinical adoption.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.