Sibei Li , Yaxin Lu , Hong Zhang , Chuzhou Ma , Han Xiao , Zifeng Liu , Shaoli Zhou , Chaojin Chen
{"title":"基于机器学习的腹腔镜肝切除术术后肺部并发症模型整合了 StEP-COMPAC 定义和术后增强恢复状态。","authors":"Sibei Li , Yaxin Lu , Hong Zhang , Chuzhou Ma , Han Xiao , Zifeng Liu , Shaoli Zhou , Chaojin Chen","doi":"10.1016/j.accpm.2024.101424","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Postoperative pulmonary complications (PPCs) contribute to high mortality rates and impose significant financial burdens. In this study, a machine learning-based prediction model was developed to identify patients at high risk of developing PPCs following laparoscopic hepatectomy.</div></div><div><h3>Methods</h3><div>Data were collected from 1022 adult patients who underwent laparoscopic hepatectomy at two centres between January 2015 and February 2021. The dataset was divided into a development set and a temporal external validation set based on the year of surgery. A total of 42 factors were extracted for pre-modelling, including the implementation status of Enhanced Recovery after Surgery (ERAS). Feature selection was performed using the least absolute shrinkage and selection operator (LASSO) method. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). The model with the best performance was externally validated using temporal data.</div></div><div><h3>Results</h3><div>The incidence of PPCs was 8.7%. Lambda.1se was selected as the optimal lambda for LASSO feature selection. For implementation of ERAS, serum gamma-glutamyl transferase levels, malignant tumour presence, total bilirubin levels, and age-adjusted Charleston Comorbidities Index were the selected factors. Seven models were developed. Among them, logistic regression demonstrated the best performance, with an AUC of 0.745 in the internal validation set and 0.680 in the temporal external validation set.</div></div><div><h3>Conclusions</h3><div>Based on the most recent definition, a machine learning model was employed to predict the risk of PPCs following laparoscopic hepatectomy. Logistic regression was identified as the best-performing model. ERAS implementation was associated with a reduction in the number of PPCs.</div></div>","PeriodicalId":48762,"journal":{"name":"Anaesthesia Critical Care & Pain Medicine","volume":"43 6","pages":"Article 101424"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating StEP-COMPAC definition and enhanced recovery after surgery status in a machine-learning-based model for postoperative pulmonary complications in laparoscopic hepatectomy\",\"authors\":\"Sibei Li , Yaxin Lu , Hong Zhang , Chuzhou Ma , Han Xiao , Zifeng Liu , Shaoli Zhou , Chaojin Chen\",\"doi\":\"10.1016/j.accpm.2024.101424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Postoperative pulmonary complications (PPCs) contribute to high mortality rates and impose significant financial burdens. In this study, a machine learning-based prediction model was developed to identify patients at high risk of developing PPCs following laparoscopic hepatectomy.</div></div><div><h3>Methods</h3><div>Data were collected from 1022 adult patients who underwent laparoscopic hepatectomy at two centres between January 2015 and February 2021. The dataset was divided into a development set and a temporal external validation set based on the year of surgery. A total of 42 factors were extracted for pre-modelling, including the implementation status of Enhanced Recovery after Surgery (ERAS). Feature selection was performed using the least absolute shrinkage and selection operator (LASSO) method. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). The model with the best performance was externally validated using temporal data.</div></div><div><h3>Results</h3><div>The incidence of PPCs was 8.7%. Lambda.1se was selected as the optimal lambda for LASSO feature selection. For implementation of ERAS, serum gamma-glutamyl transferase levels, malignant tumour presence, total bilirubin levels, and age-adjusted Charleston Comorbidities Index were the selected factors. Seven models were developed. Among them, logistic regression demonstrated the best performance, with an AUC of 0.745 in the internal validation set and 0.680 in the temporal external validation set.</div></div><div><h3>Conclusions</h3><div>Based on the most recent definition, a machine learning model was employed to predict the risk of PPCs following laparoscopic hepatectomy. Logistic regression was identified as the best-performing model. ERAS implementation was associated with a reduction in the number of PPCs.</div></div>\",\"PeriodicalId\":48762,\"journal\":{\"name\":\"Anaesthesia Critical Care & Pain Medicine\",\"volume\":\"43 6\",\"pages\":\"Article 101424\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anaesthesia Critical Care & Pain Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352556824000821\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaesthesia Critical Care & Pain Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352556824000821","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Integrating StEP-COMPAC definition and enhanced recovery after surgery status in a machine-learning-based model for postoperative pulmonary complications in laparoscopic hepatectomy
Background
Postoperative pulmonary complications (PPCs) contribute to high mortality rates and impose significant financial burdens. In this study, a machine learning-based prediction model was developed to identify patients at high risk of developing PPCs following laparoscopic hepatectomy.
Methods
Data were collected from 1022 adult patients who underwent laparoscopic hepatectomy at two centres between January 2015 and February 2021. The dataset was divided into a development set and a temporal external validation set based on the year of surgery. A total of 42 factors were extracted for pre-modelling, including the implementation status of Enhanced Recovery after Surgery (ERAS). Feature selection was performed using the least absolute shrinkage and selection operator (LASSO) method. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). The model with the best performance was externally validated using temporal data.
Results
The incidence of PPCs was 8.7%. Lambda.1se was selected as the optimal lambda for LASSO feature selection. For implementation of ERAS, serum gamma-glutamyl transferase levels, malignant tumour presence, total bilirubin levels, and age-adjusted Charleston Comorbidities Index were the selected factors. Seven models were developed. Among them, logistic regression demonstrated the best performance, with an AUC of 0.745 in the internal validation set and 0.680 in the temporal external validation set.
Conclusions
Based on the most recent definition, a machine learning model was employed to predict the risk of PPCs following laparoscopic hepatectomy. Logistic regression was identified as the best-performing model. ERAS implementation was associated with a reduction in the number of PPCs.
期刊介绍:
Anaesthesia, Critical Care & Pain Medicine (formerly Annales Françaises d''Anesthésie et de Réanimation) publishes in English the highest quality original material, both scientific and clinical, on all aspects of anaesthesia, critical care & pain medicine.