Alejandro Hermida Carrillo, Clemens Stachl, Sanaz Talaifar
{"title":"以人为本的机器辅助假设生成工作流程:对 Banker 等人(2024 年)的评论。","authors":"Alejandro Hermida Carrillo, Clemens Stachl, Sanaz Talaifar","doi":"10.1037/amp0001256","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have the potential to revolutionize a key aspect of the scientific process-hypothesis generation. Banker et al. (2024) investigate how GPT-3 and GPT-4 can be used to generate novel hypotheses useful for social psychologists. Although timely, we argue that their approach overlooks the limitations of both humans and LLMs and does not incorporate crucial information on the inquiring researcher's inner world (e.g., values, goals) and outer world (e.g., existing literature) into the hypothesis generation process. Instead, we propose a human-centered workflow (Hope et al., 2023) that recognizes the limitations and capabilities of both the researchers and LLMs. Our workflow features a process of iterative engagement between researchers and GPT-4 that augments-rather than displaces-each researcher's unique role in the hypothesis generation process. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":48468,"journal":{"name":"American Psychologist","volume":"79 6","pages":"800-802"},"PeriodicalIF":12.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A workflow for human-centered machine-assisted hypothesis generation: Commentary on Banker et al. (2024).\",\"authors\":\"Alejandro Hermida Carrillo, Clemens Stachl, Sanaz Talaifar\",\"doi\":\"10.1037/amp0001256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) have the potential to revolutionize a key aspect of the scientific process-hypothesis generation. Banker et al. (2024) investigate how GPT-3 and GPT-4 can be used to generate novel hypotheses useful for social psychologists. Although timely, we argue that their approach overlooks the limitations of both humans and LLMs and does not incorporate crucial information on the inquiring researcher's inner world (e.g., values, goals) and outer world (e.g., existing literature) into the hypothesis generation process. Instead, we propose a human-centered workflow (Hope et al., 2023) that recognizes the limitations and capabilities of both the researchers and LLMs. Our workflow features a process of iterative engagement between researchers and GPT-4 that augments-rather than displaces-each researcher's unique role in the hypothesis generation process. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":48468,\"journal\":{\"name\":\"American Psychologist\",\"volume\":\"79 6\",\"pages\":\"800-802\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Psychologist\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/amp0001256\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Psychologist","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/amp0001256","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
A workflow for human-centered machine-assisted hypothesis generation: Commentary on Banker et al. (2024).
Large language models (LLMs) have the potential to revolutionize a key aspect of the scientific process-hypothesis generation. Banker et al. (2024) investigate how GPT-3 and GPT-4 can be used to generate novel hypotheses useful for social psychologists. Although timely, we argue that their approach overlooks the limitations of both humans and LLMs and does not incorporate crucial information on the inquiring researcher's inner world (e.g., values, goals) and outer world (e.g., existing literature) into the hypothesis generation process. Instead, we propose a human-centered workflow (Hope et al., 2023) that recognizes the limitations and capabilities of both the researchers and LLMs. Our workflow features a process of iterative engagement between researchers and GPT-4 that augments-rather than displaces-each researcher's unique role in the hypothesis generation process. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Established in 1946, American Psychologist® is the flagship peer-reviewed scholarly journal of the American Psychological Association. It publishes high-impact papers of broad interest, including empirical reports, meta-analyses, and scholarly reviews, covering psychological science, practice, education, and policy. Articles often address issues of national and international significance within the field of psychology and its relationship to society. Published in an accessible style, contributions in American Psychologist are designed to be understood by both psychologists and the general public.