Galih Setyawan, Prima Asmara Sejati, Kiagus Aufa Ibrahim, Masahiro Takei
{"title":"利用高斯弛豫时间分布电阻抗断层扫描(EIT-GRTD)识别乳腺癌。","authors":"Galih Setyawan, Prima Asmara Sejati, Kiagus Aufa Ibrahim, Masahiro Takei","doi":"10.2478/joeb-2024-0011","DOIUrl":null,"url":null,"abstract":"<p><p>The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection <i>f</i> <sup>cancer</sup>. The EIT-GRTD has two steps, which are 1) the determination of the <i>f</i> <sup>cancer</sup> and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity <i>σ</i> and permitivitty <i>ε</i>, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the <i>σ</i> and <i>ε</i> of breast cancer <i>σ</i> <sup>cancer</sup>, <i>ε</i> <sup>cancer</sup> are higher than adipose tissues <i>σ</i> <sup>adipose</sup>, <i>ε</i> <sup>adipose</sup>. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is <i>f</i> <sup>cancer</sup> = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the <i>f</i> <sup>cancer</sup> based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"15 1","pages":"99-106"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD).\",\"authors\":\"Galih Setyawan, Prima Asmara Sejati, Kiagus Aufa Ibrahim, Masahiro Takei\",\"doi\":\"10.2478/joeb-2024-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection <i>f</i> <sup>cancer</sup>. The EIT-GRTD has two steps, which are 1) the determination of the <i>f</i> <sup>cancer</sup> and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity <i>σ</i> and permitivitty <i>ε</i>, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the <i>σ</i> and <i>ε</i> of breast cancer <i>σ</i> <sup>cancer</sup>, <i>ε</i> <sup>cancer</sup> are higher than adipose tissues <i>σ</i> <sup>adipose</sup>, <i>ε</i> <sup>adipose</sup>. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is <i>f</i> <sup>cancer</sup> = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the <i>f</i> <sup>cancer</sup> based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.</p>\",\"PeriodicalId\":38125,\"journal\":{\"name\":\"Journal of Electrical Bioimpedance\",\"volume\":\"15 1\",\"pages\":\"99-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Bioimpedance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/joeb-2024-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2024-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
采用高斯弛豫时间分布的电阻抗断层扫描(EIT-GRTD)与传统 EIT 对乳腺癌的识别进行了比较,以评估检测 f 癌症的最佳频率。EIT-GRTD 有两个步骤:1)确定 f 癌症;2)通过时间常数增强完善乳房重建。本文采用有限元法(FEM)软件进行二维数值模拟,以复制乳腺癌识别过程。模拟是基于两种不同的电特性构建的,即电导率σ和允许电导率ε,这两种特性是两种主要乳腺组织(脂肪组织和乳腺癌组织)所固有的。在这种情况下,乳腺癌 σ cancer、ε cancer 的 σ 和 ε 要高于脂肪组织 σ adipose、ε adipose。模拟结果表明,基于 EIT-GRTD 的乳腺癌检测最有效频率为 f cancer = 56,234 Hz。与此同时,传统的 EIT 需要更多的处理才能根据图像结果或空间传导分析确定 f cancer。从数量上看,EIT-GRTD 和传统 EIT 都能清楚地显示癌症在 EIT-GRTD 第 1 层和第 2 层的位置,而传统 EIT 只能显示第 1 层的位置。
Breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation-time distribution (EIT-GRTD).
The comparison between breast cancer recognition by electrical impedance tomography implemented with Gaussian relaxation time distribution (EIT-GRTD) and conventional EIT has been conducted to evaluate the optimal frequency for cancer detection fcancer. The EIT-GRTD has two steps, which are 1) the determination of the fcancer and 2) the refinement of breast reconstruction through time-constant enhancement. This paper employs two-dimensional numerical simulations by a finite element method (FEM) software to replicate the process of breast cancer recognition. The simulation is constructed based on two distinct electrical properties, which are conductivity σ and permitivitty ε, inherent to two major breast tissues: adipose tissues, and breast cancer tissues. In this case, the σ and ε of breast cancer σcancer, εcancer are higher than adipose tissues σadipose, εadipose. The simulation results indicate that the most effective frequency for breast cancer detection based on EIT-GRTD is fcancer = 56,234 Hz. Meanwhile, conventional EIT requires more processing to determine the fcancer based on image results or spatial conductivity analysis. Quantitatively, both EIT-GRTD and conventional EIT can clearly show the position of the cancer in layers 1 and 2 for EIT-GRTD and only layer 1 for conventional EIT.