利用基于 YOLOv8 的人工智能技术对肘关节放射摄影进行质量控制。

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Qi Lai, Weijuan Chen, Xuan Ding, Xin Huang, Wenli Jiang, Lingjing Zhang, Jinhua Chen, Dajing Guo, Zhiming Zhou, Tian-Wu Chen
{"title":"利用基于 YOLOv8 的人工智能技术对肘关节放射摄影进行质量控制。","authors":"Qi Lai, Weijuan Chen, Xuan Ding, Xin Huang, Wenli Jiang, Lingjing Zhang, Jinhua Chen, Dajing Guo, Zhiming Zhou, Tian-Wu Chen","doi":"10.1186/s41747-024-00504-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To explore an artificial intelligence (AI) technology employing YOLOv8 for quality control (QC) on elbow joint radiographs.</p><p><strong>Methods: </strong>From January 2022 to August 2023, 2643 consecutive elbow radiographs were collected and randomly assigned to the training, validation, and test sets in a 6:2:2 ratio. We proposed the anteroposterior (AP) and lateral (LAT) models to identify target detection boxes and key points on elbow radiographs using YOLOv8. These identifications were transformed into five quality standards: (1) AP elbow positioning coordinates (X<sub>A</sub> and Y<sub>A</sub>); (2) olecranon fossa positioning distance parameters (S<sub>17</sub> and S<sub>27</sub>); (3) key points of joint space (Y<sub>3</sub>, Y<sub>4</sub>, Y<sub>5</sub> and Y<sub>6</sub>); (4) LAT elbow positioning coordinates (X<sub>2</sub> and Y<sub>2</sub>); and (5) flexion angle. Models were trained and validated using 2,120 radiographs. A test set of 523 radiographs was used for assessing the agreement between AI and physician and to evaluate clinical efficiency of models.</p><p><strong>Results: </strong>The AP and LAT models demonstrated high precision, recall, and mean average precision for identifying boxes and points. AI and physicians showed high intraclass correlation coefficient (ICC) in evaluating: AP coordinates X<sub>A</sub> (0.987) and Y<sub>A</sub> (0.991); olecranon fossa parameters S<sub>17</sub> (0.964) and S<sub>27</sub> (0.951); key points Y<sub>3</sub> (0.998), Y<sub>4</sub> (0.997), Y<sub>5</sub> (0.998) and Y<sub>6</sub> (0.959); LAT coordinates X<sub>2</sub> (0.994) and Y<sub>2</sub> (0.986); and flexion angle (0.865). Compared to manual methods, using AI, QC time was reduced by 43% for AP images and 45% for LAT images (p < 0.001).</p><p><strong>Conclusion: </strong>YOLOv8-based AI technology is feasible for QC of elbow radiography with high performance.</p><p><strong>Relevance statement: </strong>This study proposed and validated a YOLOv8-based AI model for automated quality control in elbow radiography, obtaining high efficiency in clinical settings.</p><p><strong>Key points: </strong>QC of elbow joint radiography is important for detecting diseases. Models based on YOLOv8 are proposed and perform well in image QC. Models offer objective and efficient solutions for QC in elbow joint radiographs.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"107"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415556/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quality control of elbow joint radiography using a YOLOv8-based artificial intelligence technology.\",\"authors\":\"Qi Lai, Weijuan Chen, Xuan Ding, Xin Huang, Wenli Jiang, Lingjing Zhang, Jinhua Chen, Dajing Guo, Zhiming Zhou, Tian-Wu Chen\",\"doi\":\"10.1186/s41747-024-00504-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To explore an artificial intelligence (AI) technology employing YOLOv8 for quality control (QC) on elbow joint radiographs.</p><p><strong>Methods: </strong>From January 2022 to August 2023, 2643 consecutive elbow radiographs were collected and randomly assigned to the training, validation, and test sets in a 6:2:2 ratio. We proposed the anteroposterior (AP) and lateral (LAT) models to identify target detection boxes and key points on elbow radiographs using YOLOv8. These identifications were transformed into five quality standards: (1) AP elbow positioning coordinates (X<sub>A</sub> and Y<sub>A</sub>); (2) olecranon fossa positioning distance parameters (S<sub>17</sub> and S<sub>27</sub>); (3) key points of joint space (Y<sub>3</sub>, Y<sub>4</sub>, Y<sub>5</sub> and Y<sub>6</sub>); (4) LAT elbow positioning coordinates (X<sub>2</sub> and Y<sub>2</sub>); and (5) flexion angle. Models were trained and validated using 2,120 radiographs. A test set of 523 radiographs was used for assessing the agreement between AI and physician and to evaluate clinical efficiency of models.</p><p><strong>Results: </strong>The AP and LAT models demonstrated high precision, recall, and mean average precision for identifying boxes and points. AI and physicians showed high intraclass correlation coefficient (ICC) in evaluating: AP coordinates X<sub>A</sub> (0.987) and Y<sub>A</sub> (0.991); olecranon fossa parameters S<sub>17</sub> (0.964) and S<sub>27</sub> (0.951); key points Y<sub>3</sub> (0.998), Y<sub>4</sub> (0.997), Y<sub>5</sub> (0.998) and Y<sub>6</sub> (0.959); LAT coordinates X<sub>2</sub> (0.994) and Y<sub>2</sub> (0.986); and flexion angle (0.865). Compared to manual methods, using AI, QC time was reduced by 43% for AP images and 45% for LAT images (p < 0.001).</p><p><strong>Conclusion: </strong>YOLOv8-based AI technology is feasible for QC of elbow radiography with high performance.</p><p><strong>Relevance statement: </strong>This study proposed and validated a YOLOv8-based AI model for automated quality control in elbow radiography, obtaining high efficiency in clinical settings.</p><p><strong>Key points: </strong>QC of elbow joint radiography is important for detecting diseases. Models based on YOLOv8 are proposed and perform well in image QC. Models offer objective and efficient solutions for QC in elbow joint radiographs.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":\"8 1\",\"pages\":\"107\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-024-00504-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00504-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:探索采用 YOLOv8 的人工智能(AI)技术对肘关节 X 光片进行质量控制:探索一种采用YOLOv8的人工智能(AI)技术,用于肘关节X光片的质量控制(QC):从2022年1月到2023年8月,我们收集了2643张连续的肘关节X光片,并按6:2:2的比例随机分配到训练集、验证集和测试集。我们提出了前胸(AP)和侧面(LAT)模型,使用 YOLOv8 在肘部 X 光片上识别目标检测框和关键点。这些识别结果被转化为五个质量标准:(1) AP 肘关节定位坐标(XA 和 YA);(2) 肩窝定位距离参数(S17 和 S27);(3) 关节间隙关键点(Y3、Y4、Y5 和 Y6);(4) LAT 肘关节定位坐标(X2 和 Y2);(5) 屈曲角度。使用 2,120 张射线照片对模型进行了训练和验证。测试集包括 523 张射线照片,用于评估人工智能与医生之间的一致性,并评估模型的临床效率:AP和LAT模型在识别方框和点方面表现出较高的精确度、召回率和平均平均精确度。人工智能和医生在评估时显示出较高的类内相关系数(ICC):AP坐标XA(0.987)和YA(0.991);肩胛窝参数S17(0.964)和S27(0.951);关键点Y3(0.998)、Y4(0.997)、Y5(0.998)和Y6(0.959);LAT坐标X2(0.994)和Y2(0.986);以及屈曲角(0.865)。与手动方法相比,使用人工智能,AP 图像的质量控制时间缩短了 43%,LAT 图像的质量控制时间缩短了 45%(p 结论:与手动方法相比,使用人工智能,AP 图像的质量控制时间缩短了 43%,LAT 图像的质量控制时间缩短了 45%:基于 YOLOv8 的人工智能技术可用于肘关节放射摄影的质量控制,且性能卓越:本研究提出并验证了基于 YOLOv8 的人工智能模型,用于肘关节放射摄影的自动质量控制,在临床环境中获得了高效率:要点:肘关节放射摄影的质量控制对于检测疾病非常重要。本文提出了基于 YOLOv8 的模型,该模型在图像质量控制方面表现良好。模型为肘关节放射摄影的质量控制提供了客观、高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality control of elbow joint radiography using a YOLOv8-based artificial intelligence technology.

Background: To explore an artificial intelligence (AI) technology employing YOLOv8 for quality control (QC) on elbow joint radiographs.

Methods: From January 2022 to August 2023, 2643 consecutive elbow radiographs were collected and randomly assigned to the training, validation, and test sets in a 6:2:2 ratio. We proposed the anteroposterior (AP) and lateral (LAT) models to identify target detection boxes and key points on elbow radiographs using YOLOv8. These identifications were transformed into five quality standards: (1) AP elbow positioning coordinates (XA and YA); (2) olecranon fossa positioning distance parameters (S17 and S27); (3) key points of joint space (Y3, Y4, Y5 and Y6); (4) LAT elbow positioning coordinates (X2 and Y2); and (5) flexion angle. Models were trained and validated using 2,120 radiographs. A test set of 523 radiographs was used for assessing the agreement between AI and physician and to evaluate clinical efficiency of models.

Results: The AP and LAT models demonstrated high precision, recall, and mean average precision for identifying boxes and points. AI and physicians showed high intraclass correlation coefficient (ICC) in evaluating: AP coordinates XA (0.987) and YA (0.991); olecranon fossa parameters S17 (0.964) and S27 (0.951); key points Y3 (0.998), Y4 (0.997), Y5 (0.998) and Y6 (0.959); LAT coordinates X2 (0.994) and Y2 (0.986); and flexion angle (0.865). Compared to manual methods, using AI, QC time was reduced by 43% for AP images and 45% for LAT images (p < 0.001).

Conclusion: YOLOv8-based AI technology is feasible for QC of elbow radiography with high performance.

Relevance statement: This study proposed and validated a YOLOv8-based AI model for automated quality control in elbow radiography, obtaining high efficiency in clinical settings.

Key points: QC of elbow joint radiography is important for detecting diseases. Models based on YOLOv8 are proposed and perform well in image QC. Models offer objective and efficient solutions for QC in elbow joint radiographs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信