Qian-Qian Ao, Fang-Xiao Lu, Liu-Qing Yang, Chun Li, Zeng-Kang Zhai, Dong-Ye Jia, Yuan-Qing Jiang, Bo Yang
{"title":"分析甘蓝型油菜转录因子 BnaABI5 的表达特征并鉴定其相互作用蛋白","authors":"Qian-Qian Ao, Fang-Xiao Lu, Liu-Qing Yang, Chun Li, Zeng-Kang Zhai, Dong-Ye Jia, Yuan-Qing Jiang, Bo Yang","doi":"10.16288/j.yczz.24-064","DOIUrl":null,"url":null,"abstract":"<p><p>Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of <i>EM6</i> target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 9","pages":"737-749"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of expression characteristics and identification of interaction proteins of transcription factor BnaABI5 in <i>Brassica napus</i>.\",\"authors\":\"Qian-Qian Ao, Fang-Xiao Lu, Liu-Qing Yang, Chun Li, Zeng-Kang Zhai, Dong-Ye Jia, Yuan-Qing Jiang, Bo Yang\",\"doi\":\"10.16288/j.yczz.24-064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of <i>EM6</i> target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.</p>\",\"PeriodicalId\":35536,\"journal\":{\"name\":\"遗传\",\"volume\":\"46 9\",\"pages\":\"737-749\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遗传\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://doi.org/10.16288/j.yczz.24-064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Analysis of expression characteristics and identification of interaction proteins of transcription factor BnaABI5 in Brassica napus.
Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of EM6 target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.
期刊介绍:
Hereditas is a national academic journal sponsored by the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and the Chinese Society of Genetics and published by Science Press. It is a Chinese core journal and a Chinese high-quality scientific journal. The journal mainly publishes innovative research papers in the fields of genetics, genomics, cell biology, developmental biology, biological evolution, genetic engineering and biotechnology; new technologies and new methods; monographs and reviews on hot issues in the discipline; academic debates and discussions; experience in genetics teaching; introductions to famous geneticists at home and abroad; genetic counseling; information on academic conferences at home and abroad, etc. Main columns: review, frontier focus, research report, technology and method, resources and platform, experimental operation guide, genetic resources, genetics teaching, scientific news, etc.