利用无监督泊松流生成模型抑制光子计数计算机断层扫描中的噪声。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dennis Hein, Staffan Holmin, Timothy Szczykutowicz, Jonathan S Maltz, Mats Danielsson, Ge Wang, Mats Persson
{"title":"利用无监督泊松流生成模型抑制光子计数计算机断层扫描中的噪声。","authors":"Dennis Hein, Staffan Holmin, Timothy Szczykutowicz, Jonathan S Maltz, Mats Danielsson, Ge Wang, Mats Persson","doi":"10.1186/s42492-024-00175-6","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models.\",\"authors\":\"Dennis Hein, Staffan Holmin, Timothy Szczykutowicz, Jonathan S Maltz, Mats Danielsson, Ge Wang, Mats Persson\",\"doi\":\"10.1186/s42492-024-00175-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-024-00175-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00175-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)已被证明对计算机断层扫描(CT)图像去噪非常重要。然而,此类模型通常是在监督下进行训练的,需要配对数据,而在实践中可能很难获得配对数据。扩散模型提供了通过后验采样解决各种逆问题的无监督方法。特别是,利用通过无监督学习获得的先验分布的估计无条件得分函数,我们可以通过劫持和正则化从所需的后验中进行采样。然而,由于使用的是迭代求解器,所需的函数评估次数(NFE)可能会比单步采样器大几个数量级。在本文中,我们将逆问题求解的无监督方法扩展到泊松流生成模型 (PFGM)++ 的情况,为光子计数 CT 提出了一种新型图像去噪技术。通过劫持和正则化采样过程,我们得到了单步采样器,即 NFE = 1。我们提出的方法将后验采样与扩散模型作为特例结合在一起。我们证明,PFGM++ 框架增加的鲁棒性可显著提高性能。我们的研究结果表明,在临床低剂量 CT 数据和来自 GE HealthCare 开发的光子计数 CT 系统原型的临床图像上,与流行的监督式(包括 NFE = 1 的最先进扩散式模型(一致性模型))、无监督式和非基于 DL 的图像去噪技术相比,我们的方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models.

Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信