Jin Sun No , Ji Yeong Noh , Chae Young Lee , Il-Hwan Kim , Jeong-Ah Kim , Yu Jeong Ahn , Hyeokjin Lee , Jeong-Min Kim , Nam-Joo Lee , Dong-Wook Lee , Jeong-Hoon Kwon , JeeEun Rhee , Eun-Jin Kim
{"title":"大韩民国 XBB 浪潮期间 SARS-CoV-2 变体的动态变化。","authors":"Jin Sun No , Ji Yeong Noh , Chae Young Lee , Il-Hwan Kim , Jeong-Ah Kim , Yu Jeong Ahn , Hyeokjin Lee , Jeong-Min Kim , Nam-Joo Lee , Dong-Wook Lee , Jeong-Hoon Kwon , JeeEun Rhee , Eun-Jin Kim","doi":"10.1016/j.virusres.2024.199471","DOIUrl":null,"url":null,"abstract":"<div><div>As COVID-19 has become endemic, SARS-CoV-2 variants are becoming increasingly diverse, underscoring the escalating importance of global genomic surveillance. This study analyzed 86,762 COVID-19 samples identified in the Republic of Korea from September 2022 to November 2023. The results revealed a consistent increase in the prevalence of the XBB variants following the dominance of BN.1, with various XBB sub-lineages co-circulating in the Republic of Korea. The overall nucleotide diversity (π) among the SARS-CoV-2 genomes was 0.00155. Evolutionary analysis revealed that the average time interval between the first detection and estimated date of the most recent common ancestor of Korean XBB sub-lineages was 47 d, suggesting that the novel variants were efficiently identified in the Korean surveillance system. The mutation rate was determined to be in the range of 5.6 × 10<sup>–4</sup> to 9.1 × 10<sup>–4</sup> substitutions/site/year. In conclusion, this study provides insights into the genetic diversity and evolutionary interpretation of the XBB sub-lineages during the XBB wave in the Republic of Korea, highlighting the importance of continued genomic surveillance for emerging variants.</div></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of SARS-CoV-2 variants during the XBB wave in the Republic of Korea\",\"authors\":\"Jin Sun No , Ji Yeong Noh , Chae Young Lee , Il-Hwan Kim , Jeong-Ah Kim , Yu Jeong Ahn , Hyeokjin Lee , Jeong-Min Kim , Nam-Joo Lee , Dong-Wook Lee , Jeong-Hoon Kwon , JeeEun Rhee , Eun-Jin Kim\",\"doi\":\"10.1016/j.virusres.2024.199471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As COVID-19 has become endemic, SARS-CoV-2 variants are becoming increasingly diverse, underscoring the escalating importance of global genomic surveillance. This study analyzed 86,762 COVID-19 samples identified in the Republic of Korea from September 2022 to November 2023. The results revealed a consistent increase in the prevalence of the XBB variants following the dominance of BN.1, with various XBB sub-lineages co-circulating in the Republic of Korea. The overall nucleotide diversity (π) among the SARS-CoV-2 genomes was 0.00155. Evolutionary analysis revealed that the average time interval between the first detection and estimated date of the most recent common ancestor of Korean XBB sub-lineages was 47 d, suggesting that the novel variants were efficiently identified in the Korean surveillance system. The mutation rate was determined to be in the range of 5.6 × 10<sup>–4</sup> to 9.1 × 10<sup>–4</sup> substitutions/site/year. In conclusion, this study provides insights into the genetic diversity and evolutionary interpretation of the XBB sub-lineages during the XBB wave in the Republic of Korea, highlighting the importance of continued genomic surveillance for emerging variants.</div></div>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001643\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170224001643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Dynamics of SARS-CoV-2 variants during the XBB wave in the Republic of Korea
As COVID-19 has become endemic, SARS-CoV-2 variants are becoming increasingly diverse, underscoring the escalating importance of global genomic surveillance. This study analyzed 86,762 COVID-19 samples identified in the Republic of Korea from September 2022 to November 2023. The results revealed a consistent increase in the prevalence of the XBB variants following the dominance of BN.1, with various XBB sub-lineages co-circulating in the Republic of Korea. The overall nucleotide diversity (π) among the SARS-CoV-2 genomes was 0.00155. Evolutionary analysis revealed that the average time interval between the first detection and estimated date of the most recent common ancestor of Korean XBB sub-lineages was 47 d, suggesting that the novel variants were efficiently identified in the Korean surveillance system. The mutation rate was determined to be in the range of 5.6 × 10–4 to 9.1 × 10–4 substitutions/site/year. In conclusion, this study provides insights into the genetic diversity and evolutionary interpretation of the XBB sub-lineages during the XBB wave in the Republic of Korea, highlighting the importance of continued genomic surveillance for emerging variants.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.