{"title":"新型咪唑烷吲哚二氧肟及其铂(II)配合物:合成及其对乳腺癌细胞抗肿瘤活性的研究。","authors":"Emrah Karahan, Tuğba Gençoğlu Katmerlikaya, Emel Önal, Aydan Dağ, Ayşe Gül Gürek, Vefa Ahsen","doi":"10.55730/1300-0527.3681","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi <i>vic</i>-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"48 4","pages":"582-596"},"PeriodicalIF":1.3000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407372/pdf/","citationCount":"0","resultStr":"{\"title\":\"New imidazolidindionedioximes and their Pt(II) complexes: synthesis and investigation of their antitumoral activities on breast cancer cells.\",\"authors\":\"Emrah Karahan, Tuğba Gençoğlu Katmerlikaya, Emel Önal, Aydan Dağ, Ayşe Gül Gürek, Vefa Ahsen\",\"doi\":\"10.55730/1300-0527.3681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi <i>vic</i>-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.</p>\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":\"48 4\",\"pages\":\"582-596\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3681\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3681","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
New imidazolidindionedioximes and their Pt(II) complexes: synthesis and investigation of their antitumoral activities on breast cancer cells.
Breast cancer is one of the most common types of cancer worldwide and has the most lethality ratio for females among all cancers. Although current cancer therapeutics have made considerable advancements, there is still room for improvement in terms of efficacy. Many anticancer drugs have a risk of causing serious adverse effects due to their nonspecific cytotoxic effects on both tumor and healthy cells. New therapeutics might have a greater ability to kill cancer cells, reduce the volume of tumors, and improve overall therapy response rates. Herein, we report the efficient synthesis and characterization of three amphi vic-dioximes and their six novel mono-, which are extremely rare in platinum chemistry, and bisplatinum(II) complexes for breast cancer treatment. Antitumoral activities of Pt(II) complexes have been investigated on CCD-1079Sk healthy fibroblast cell line, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cytotoxicity, cell cycle, and apoptotic assays were performed. All new Pt(II) complexes exhibited selective antiproliferative effects on breast cancer cells by showing less cytotoxicity to healthy cells than known anticancer drugs cisplatin and bicalutamide. In vitro studies show that these new Pt complexes have high anticancer and antiproliferative effects and may be new alternatives to existing anticancer drugs.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.