用于高效捕获碘的β-酮胺连接共价有机框架。

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Turkish Journal of Chemistry Pub Date : 2024-06-15 eCollection Date: 2024-01-01 DOI:10.55730/1300-0527.3684
Onur Büyükçakir
{"title":"用于高效捕获碘的β-酮胺连接共价有机框架。","authors":"Onur Büyükçakir","doi":"10.55730/1300-0527.3684","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a <i>β</i>-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g<sup>-1</sup> at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g<sup>-1</sup> in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407363/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>β</i>-Ketoenamine-linked covalent organic framework for efficient iodine capture.\",\"authors\":\"Onur Büyükçakir\",\"doi\":\"10.55730/1300-0527.3684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a <i>β</i>-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g<sup>-1</sup> at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g<sup>-1</sup> in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.</p>\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407363/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3684\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3684","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索能有效捕获放射性碘的材料对于管理核电站产生的核废料至关重要。本研究报告称,β-酮烯胺连接共价有机框架(bCOF)是一种有效的吸附剂,可从蒸汽和溶液中捕获碘。bCOF 的高孔隙率和富含杂原子的骨架使其在 75 °C 环境压力下的碘蒸气吸收能力高达 2.51 g-1。此外,经过五个连续的吸附-解吸循环后,bCOF 表现出较高的可重复使用性能,碘蒸气容量保持率显著提高。我们还利用各种原位结构表征技术对吸附机理进行了研究,这些机理研究表明,bCOF 与碘之间存在很强的化学作用。bCOF 还表现出良好的碘吸收性能,在环己烷中的吸收率高达 512 mg g-1,并且具有很高的去除率。bCOF 在吸附蒸汽和溶液中的碘方面的性能使其有望成为一种有效的吸附剂,用于捕捉核电站排放的放射性碘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
β-Ketoenamine-linked covalent organic framework for efficient iodine capture.

Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a β-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g-1 at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g-1 in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信