{"title":"借助人工神经网络,利用串联质谱数据预测遗传性代谢紊乱。","authors":"Pembe Soylu Üstkoyuncu, Nurettin Üstkoyuncu","doi":"10.55730/1300-0144.5840","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Tandem mass spectrometry is helpful in diagnosing amino acid metabolism disorders, organic acidemias, and fatty acid oxidation disorders and can provide rapid and accurate diagnosis for inborn errors of metabolism. The aim of this study was to predict inborn errors of metabolism in children with the help of artificial neural networks using tandem mass spectrometry data.</p><p><strong>Materials and methods: </strong>Forty-seven and 13 parameters of tandem mass spectrometry datasets obtained from 2938 different patients were respectively taken into account to train and test the artificial neural networks. Different artificial neural network models were established to obtain better prediction performances. The obtained results were compared with each other for fair comparisons.</p><p><strong>Results: </strong>The best results were obtained by using the rectified linear unit activation function. One, two, and three hidden layers were considered for artificial neural network models established with both 47 and 13 parameters. The sensitivity of model B2 for definitive inherited metabolic disorders was found to be 80%. The accuracy rates of model A3 and model B2 are 99.3% and 99.2%, respectively. The area under the curve value of model A3 was 0.87, while that of model B2 was 0.90.</p><p><strong>Conclusion: </strong>The results showed that the proposed artificial neural networks are capable of predicting inborn errors of metabolism very accurately. Therefore, developing new technologies to identify and predict inborn errors of metabolism will be very useful.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407331/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of inherited metabolic disorders using tandem mass spectrometry data with the help of artificial neural networks.\",\"authors\":\"Pembe Soylu Üstkoyuncu, Nurettin Üstkoyuncu\",\"doi\":\"10.55730/1300-0144.5840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Tandem mass spectrometry is helpful in diagnosing amino acid metabolism disorders, organic acidemias, and fatty acid oxidation disorders and can provide rapid and accurate diagnosis for inborn errors of metabolism. The aim of this study was to predict inborn errors of metabolism in children with the help of artificial neural networks using tandem mass spectrometry data.</p><p><strong>Materials and methods: </strong>Forty-seven and 13 parameters of tandem mass spectrometry datasets obtained from 2938 different patients were respectively taken into account to train and test the artificial neural networks. Different artificial neural network models were established to obtain better prediction performances. The obtained results were compared with each other for fair comparisons.</p><p><strong>Results: </strong>The best results were obtained by using the rectified linear unit activation function. One, two, and three hidden layers were considered for artificial neural network models established with both 47 and 13 parameters. The sensitivity of model B2 for definitive inherited metabolic disorders was found to be 80%. The accuracy rates of model A3 and model B2 are 99.3% and 99.2%, respectively. The area under the curve value of model A3 was 0.87, while that of model B2 was 0.90.</p><p><strong>Conclusion: </strong>The results showed that the proposed artificial neural networks are capable of predicting inborn errors of metabolism very accurately. Therefore, developing new technologies to identify and predict inborn errors of metabolism will be very useful.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407331/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0144.5840\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55730/1300-0144.5840","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of inherited metabolic disorders using tandem mass spectrometry data with the help of artificial neural networks.
Background/aim: Tandem mass spectrometry is helpful in diagnosing amino acid metabolism disorders, organic acidemias, and fatty acid oxidation disorders and can provide rapid and accurate diagnosis for inborn errors of metabolism. The aim of this study was to predict inborn errors of metabolism in children with the help of artificial neural networks using tandem mass spectrometry data.
Materials and methods: Forty-seven and 13 parameters of tandem mass spectrometry datasets obtained from 2938 different patients were respectively taken into account to train and test the artificial neural networks. Different artificial neural network models were established to obtain better prediction performances. The obtained results were compared with each other for fair comparisons.
Results: The best results were obtained by using the rectified linear unit activation function. One, two, and three hidden layers were considered for artificial neural network models established with both 47 and 13 parameters. The sensitivity of model B2 for definitive inherited metabolic disorders was found to be 80%. The accuracy rates of model A3 and model B2 are 99.3% and 99.2%, respectively. The area under the curve value of model A3 was 0.87, while that of model B2 was 0.90.
Conclusion: The results showed that the proposed artificial neural networks are capable of predicting inborn errors of metabolism very accurately. Therefore, developing new technologies to identify and predict inborn errors of metabolism will be very useful.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.