利用增材制造技术生产的合成骨块可用于修复严重骨缺损。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue engineering. Part C, Methods Pub Date : 2024-11-01 Epub Date: 2024-10-09 DOI:10.1089/ten.TEC.2024.0214
Eladio Muñoz, Ana Carolina Loyola, Leticia Pitol-Palin, Roberta Okamoto, Jamil Shibli, Michel Messora, Arthur Belém Novaes, Sergio Scombatti de Souza
{"title":"利用增材制造技术生产的合成骨块可用于修复严重骨缺损。","authors":"Eladio Muñoz, Ana Carolina Loyola, Leticia Pitol-Palin, Roberta Okamoto, Jamil Shibli, Michel Messora, Arthur Belém Novaes, Sergio Scombatti de Souza","doi":"10.1089/ten.TEC.2024.0214","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the efficacy of synthetic bone blocks, composed of hydroxyapatite (HA) or β-tricalcium phosphate (B-TCP), which were produced by additive manufacturing and used for the repair of critical size bone defects (CSDs) in rat calvaria. Sixty rats were divided into five groups (<i>n</i> = 12): blood clot (CONTROL), 3D-printed HA (HA), 3D-printed β-TCP (B-TCP), 3D-printed HA + autologous micrograft (HA+RIG), and 3D-printed β-TCP + autologous micrograft (B-TCP+RIG). CSDs were surgically created in the parietal bone and treated with the respective biomaterials. The animals were euthanized at 30 and 60 days postsurgery for microcomputed tomography (micro-CT) histomorphometric, and immunohistochemical analysis to assess new bone formation. Micro-CT analysis showed that both biomaterials were incorporated into the animals' calvaria. The HA+RIG group, especially at 60 days, exhibited a significant increase in bone formation compared with the control. The use of 3D-printed bioceramics resulted in thinner trabeculae but a higher number of trabeculae compared with the control. Histomorphometric analysis showed bone islands in close contact with the B-TCP and HA blocks at 30 days. The HA blocks (HA and HA+RIG groups) showed statistically higher new bone formation values with further improvement when autologous micrografts were included. Immunohistochemical analysis showed the expression of bone repair proteins. At 30 days, the HA+RIG group had moderate Osteopontin (OPN) staining, indicating that the repair process had started, whereas other groups showed no staining. At 60 days, the HA+RIG group showed slight staining, similar to that of the control. Osteocalcin (OCN) staining, indicating osteoblastic activity, showed moderate expression in the HA and HA+RIG groups at 30 days, with slight expression in the B-TCP and B-TCP+RIG groups. The combination of HA blocks with autologous micrografts significantly enhanced bone repair, suggesting that the presence of progenitor cells and growth factors in the micrografts contributed to the improved outcomes. It was concluded that 3D-printed bone substitute blocks, associated with autologous micrografts, are highly effective in promoting bone repair in CSDs in rat calvaria.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"533-546"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Bone Blocks Produced by Additive Manufacturing in the Repair of Critical Bone Defects.\",\"authors\":\"Eladio Muñoz, Ana Carolina Loyola, Leticia Pitol-Palin, Roberta Okamoto, Jamil Shibli, Michel Messora, Arthur Belém Novaes, Sergio Scombatti de Souza\",\"doi\":\"10.1089/ten.TEC.2024.0214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the efficacy of synthetic bone blocks, composed of hydroxyapatite (HA) or β-tricalcium phosphate (B-TCP), which were produced by additive manufacturing and used for the repair of critical size bone defects (CSDs) in rat calvaria. Sixty rats were divided into five groups (<i>n</i> = 12): blood clot (CONTROL), 3D-printed HA (HA), 3D-printed β-TCP (B-TCP), 3D-printed HA + autologous micrograft (HA+RIG), and 3D-printed β-TCP + autologous micrograft (B-TCP+RIG). CSDs were surgically created in the parietal bone and treated with the respective biomaterials. The animals were euthanized at 30 and 60 days postsurgery for microcomputed tomography (micro-CT) histomorphometric, and immunohistochemical analysis to assess new bone formation. Micro-CT analysis showed that both biomaterials were incorporated into the animals' calvaria. The HA+RIG group, especially at 60 days, exhibited a significant increase in bone formation compared with the control. The use of 3D-printed bioceramics resulted in thinner trabeculae but a higher number of trabeculae compared with the control. Histomorphometric analysis showed bone islands in close contact with the B-TCP and HA blocks at 30 days. The HA blocks (HA and HA+RIG groups) showed statistically higher new bone formation values with further improvement when autologous micrografts were included. Immunohistochemical analysis showed the expression of bone repair proteins. At 30 days, the HA+RIG group had moderate Osteopontin (OPN) staining, indicating that the repair process had started, whereas other groups showed no staining. At 60 days, the HA+RIG group showed slight staining, similar to that of the control. Osteocalcin (OCN) staining, indicating osteoblastic activity, showed moderate expression in the HA and HA+RIG groups at 30 days, with slight expression in the B-TCP and B-TCP+RIG groups. The combination of HA blocks with autologous micrografts significantly enhanced bone repair, suggesting that the presence of progenitor cells and growth factors in the micrografts contributed to the improved outcomes. It was concluded that 3D-printed bone substitute blocks, associated with autologous micrografts, are highly effective in promoting bone repair in CSDs in rat calvaria.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"533-546\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2024.0214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

这项研究评估了由羟基磷灰石(HA)或β-磷酸三钙(B-TCP)组成的合成骨块的功效。合成骨块是通过快速成型技术生产的,与自体微移植相关联,用于修复大鼠小腿的临界骨缺损(CSD)。60 只大鼠分为五组(n = 12):血块组(CONTROL);3D打印HA组(HA);3D打印β-TCP组(B-TCP);3D打印HA+自体微移植组(HA+RIG);3D打印β-TCP+自体微移植组(B-TCP+RIG)。通过手术在顶骨中创建 CSD,并用相应的生物材料进行处理。动物分别在术后 30 天和 60 天安乐死,进行显微计算机断层扫描(micro-CT)、组织形态学和免疫组化分析,以评估新骨形成情况。显微计算机断层扫描分析表明,两种生物材料都融入了动物的腓肠肌。与对照组相比,HA+RIG 组的骨形成显著增加,尤其是在 60 天时。与对照组相比,3D 打印生物陶瓷组的骨小梁较薄,但数量较多。组织形态分析显示,30 天后,骨岛与 B-TCP 和 HA 块紧密接触。从统计学角度看,HA 块(HA 组和 HA+RIG 组)的新骨形成值更高,加入自体微移植后,新骨形成值进一步提高。免疫组化分析显示了骨修复蛋白的表达。30 天时,HA+RIG 组出现中度骨生成素(OPN)染色,表明修复过程已经开始,而其他组则没有染色。60 天时,HA+RIG 组出现轻微染色,与对照组相似。骨钙素(OCN)染色表明成骨细胞活性,30 天时,HA 组和 HA+RIG 组显示中度表达,B-TCP 组和 B-TCP+RIG 组显示轻微表达。HA 块与自体微移植物的结合显著增强了骨修复,这表明微移植物中祖细胞和生长因子的存在有助于改善疗效。结论是三维打印骨替代块与自体微移植物的结合在促进大鼠小腿 CSD 骨修复方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Bone Blocks Produced by Additive Manufacturing in the Repair of Critical Bone Defects.

This study evaluated the efficacy of synthetic bone blocks, composed of hydroxyapatite (HA) or β-tricalcium phosphate (B-TCP), which were produced by additive manufacturing and used for the repair of critical size bone defects (CSDs) in rat calvaria. Sixty rats were divided into five groups (n = 12): blood clot (CONTROL), 3D-printed HA (HA), 3D-printed β-TCP (B-TCP), 3D-printed HA + autologous micrograft (HA+RIG), and 3D-printed β-TCP + autologous micrograft (B-TCP+RIG). CSDs were surgically created in the parietal bone and treated with the respective biomaterials. The animals were euthanized at 30 and 60 days postsurgery for microcomputed tomography (micro-CT) histomorphometric, and immunohistochemical analysis to assess new bone formation. Micro-CT analysis showed that both biomaterials were incorporated into the animals' calvaria. The HA+RIG group, especially at 60 days, exhibited a significant increase in bone formation compared with the control. The use of 3D-printed bioceramics resulted in thinner trabeculae but a higher number of trabeculae compared with the control. Histomorphometric analysis showed bone islands in close contact with the B-TCP and HA blocks at 30 days. The HA blocks (HA and HA+RIG groups) showed statistically higher new bone formation values with further improvement when autologous micrografts were included. Immunohistochemical analysis showed the expression of bone repair proteins. At 30 days, the HA+RIG group had moderate Osteopontin (OPN) staining, indicating that the repair process had started, whereas other groups showed no staining. At 60 days, the HA+RIG group showed slight staining, similar to that of the control. Osteocalcin (OCN) staining, indicating osteoblastic activity, showed moderate expression in the HA and HA+RIG groups at 30 days, with slight expression in the B-TCP and B-TCP+RIG groups. The combination of HA blocks with autologous micrografts significantly enhanced bone repair, suggesting that the presence of progenitor cells and growth factors in the micrografts contributed to the improved outcomes. It was concluded that 3D-printed bone substitute blocks, associated with autologous micrografts, are highly effective in promoting bone repair in CSDs in rat calvaria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信