开发脱细胞猪子宫细胞外基质衍生移植物的生物相容性评估。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue engineering. Part C, Methods Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI:10.1089/ten.TEC.2024.0229
Gustavo Henrique Doná Rodrigues Almeida, Mariana Sversut Gibin, Jaqueline de Carvalho Rinaldi, Victória Hellen de Souza Gonzaga, Camila Rodrigues Thom, Rebeca Piatniczka Iglesia, Raquel Souza da Silva, Iorrane Couto Fernandes, Rafael Oliveira Bergamo, Luan Stefani Lima, Beatriz Lopomo, Giovanna Vitória Consani Santos, Thais Naomi Gonçalves Nesiyama, Francielle Sato, Mauro Luciano Baesso, Luzmarina Hernandes, Flávio Vieira Meirelles, Ana Claudia Oliveira Carreira
{"title":"开发脱细胞猪子宫细胞外基质衍生移植物的生物相容性评估。","authors":"Gustavo Henrique Doná Rodrigues Almeida, Mariana Sversut Gibin, Jaqueline de Carvalho Rinaldi, Victória Hellen de Souza Gonzaga, Camila Rodrigues Thom, Rebeca Piatniczka Iglesia, Raquel Souza da Silva, Iorrane Couto Fernandes, Rafael Oliveira Bergamo, Luan Stefani Lima, Beatriz Lopomo, Giovanna Vitória Consani Santos, Thais Naomi Gonçalves Nesiyama, Francielle Sato, Mauro Luciano Baesso, Luzmarina Hernandes, Flávio Vieira Meirelles, Ana Claudia Oliveira Carreira","doi":"10.1089/ten.TEC.2024.0229","DOIUrl":null,"url":null,"abstract":"<p><p>Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis <i>in situ</i>. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, <i>in vitro</i> performance and <i>in vivo</i> biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection <i>in vivo</i> in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"569-589"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts.\",\"authors\":\"Gustavo Henrique Doná Rodrigues Almeida, Mariana Sversut Gibin, Jaqueline de Carvalho Rinaldi, Victória Hellen de Souza Gonzaga, Camila Rodrigues Thom, Rebeca Piatniczka Iglesia, Raquel Souza da Silva, Iorrane Couto Fernandes, Rafael Oliveira Bergamo, Luan Stefani Lima, Beatriz Lopomo, Giovanna Vitória Consani Santos, Thais Naomi Gonçalves Nesiyama, Francielle Sato, Mauro Luciano Baesso, Luzmarina Hernandes, Flávio Vieira Meirelles, Ana Claudia Oliveira Carreira\",\"doi\":\"10.1089/ten.TEC.2024.0229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis <i>in situ</i>. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, <i>in vitro</i> performance and <i>in vivo</i> biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection <i>in vivo</i> in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"569-589\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEC.2024.0229\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生物基质衍生的生物材料在再生医学领域具有巨大的治疗潜力,能够诱导细胞增殖、组织重塑和原位血管生成,因此被广泛研究。在这种情况下,子宫壁等高度血管化和增生的组织是生产无细胞基质的有趣来源,可用作诱导组织再生的生物活性材料。因此,本研究旨在建立一种生成脱细胞子宫支架(decellularized uterine scaffolds,dUT)的优化方案,研究其结构、成分和生物力学特性。此外,还对其体外性能和体内生物相容性进行了评估,以验证其在组织修复方面的潜在应用。结果表明,该方案能有效促进细胞移除,与原生组织相比,dUT 的总体结构和 ECM 成分保持不变。此外,支架还具有细胞相容性,允许细胞生长和存活。就生物相容性而言,在免疫功能正常的大鼠皮下植入模型中,这些基质在体内没有诱发任何免疫排斥反应的迹象,显示出植入 30 天后组织整合的迹象。总之,这些研究结果表明,除生殖领域的研究外,dUT 支架还可作为一种生物材料用于再生目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts.

Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis in situ. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, in vitro performance and in vivo biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection in vivo in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信